Биогазовая установка для отопления дома своими руками. Биогазовые установки Биогазовые установки для фермерских

Вопрос получения метана интересен тем владельцам частных хозяйств, кто занимается разведением птицы или свиней, а также держит крупнорогатый скот. Как правило, в таких хозяйствах вырабатывается значительное количество органических отходов жизнедеятельности животных, они-то и могут принести немалую пользу, став источником дешевого топлива. Цель данного материала – рассказать, как добыть биогаз в домашних условиях, используя эти самые отходы.

Общие сведения о биогазе

Получаемый из различного навоза и птичьего помета домашний биогаз большей частью состоит из метана. Там его от 50 до 80% в зависимости от того, чьи отходы жизнедеятельности использовались для производства. Того самого метана, что горит в наших плитах и котлах, и за который мы платим порой немалые деньги согласно показаниям счетчика.

Чтобы дать представление о количестве горючего, что теоретически можно добыть при содержании животных дома или на даче, представим таблицу с данными о выходе биогаза и содержании в нем чистого метана:

Как можно понять из таблицы, для эффективного производства газа из коровьего навоза и силосных отходов понадобится довольно большое количество сырья. Выгоднее добывать горючее из навоза свиней и помета индюков.

Оставшаяся доля веществ (25-45%), из которых состоит домашний биогаз, приходится на углекислый газ (до 43%) и сероводород (1%). Также в составе горючего присутствует азот, аммиак и кислород, но в незначительных количествах. Кстати, именно благодаря выделению сероводорода и аммиака навозная куча издает такой знакомый «приятный» запах. Что касается энергетического содержания, то 1 м3 метана теоретически может выделить при сжигании до 25 МДж (6.95 кВт) тепловой энергии. Удельная теплота сгорания биогаза зависит от доли метана в его составе.

Для справки. На практике проверено, что для обогрева утепленного дома, находящегося в средней полосе, потребно около 45 м3 биологического горючего на 1 м2 площади за отопительный сезон.

Природой устроено так, что биогаз из навоза образуется самопроизвольно и независимо от того, хотим его получать или нет. Навозная куча перегнивает в течение года – полутора, просто находясь на открытом воздухе и даже при отрицательной температуре. Все это время она выделяет биогаз, но только в небольших количествах, поскольку процесс растянут во времени. Причиной служат сотни видов микроорганизмов, находящихся в экскрементах животных. То есть, для начала газовыделения ничего не нужно, оно будет происходить самостоятельно. А вот для оптимизации процесса и его ускорения потребуется специальное оборудование, о чем пойдет речь далее.

Технология получения биогаза

Суть эффективного производства - ускорение природного процесса разложения органического сырья. Для этого находящимся в нем бактериям необходимо создать наилучшие условия для размножения и переработки отходов. И первое условие – поместить сырье в закрытую емкость – реактор, иначе - генератор биогаза. Отходы измельчаются и перемешиваются в реакторе с расчетным количеством чистой воды до получения исходного субстрата.

Примечание. Чистая вода необходима для того, чтобы в субстрат не попали вещества, пагубно влияющие на жизнедеятельность бактерий. Как следствие, процесс брожения может сильно замедлиться.

Промышленная установка по производству биогаза оборудована подогревом субстрата, средствами перемешивания и контроля над кислотностью среды. Перемешивание выполняется с целью удалить с поверхности твердую корку, что возникает во время брожения и мешает выделению биогаза. Длительность технологического процесса – не менее 15 дней, за это время степень разложения достигает 25%. Считается, что максимальный выход горючего происходит до 33% разложения биомассы.

Технологией предусматривается ежедневное обновление субстрата, так обеспечивается интенсивное получение газа из навоза, в промышленных установках оно исчисляется сотнями кубических метров в день. Часть отработанной массы в размере порядка 5% от общего объема удаляется из реактора, а на ее место загружается столько же свежего биологического сырья. Отработанный материал используется в качестве органического удобрения полей.

Схема биогазовой установки

Получая биогаз в домашних условиях, невозможно создать столь благоприятные условия для микроорганизмов, как в промышленном производстве. И в первую очередь это утверждение касается организации подогрева генератора. Как известно, это требует затрат энергии, что ведет к существенному удорожанию себестоимости горючего. Контролировать соблюдение слабощелочной среды, присущей процессу брожения, вполне возможно. Только как ее корректировать в случае отклонений? Снова затраты.

Владельцам частных хозяйств, желающим добывать биогаз своими руками, рекомендуется изготовить реактор простой конструкции из доступных материалов, а потом его модернизировать в силу своих возможностей. Что надо сделать:

  • герметично закрывающуюся емкость объемом не менее 1 м3. Разные баки и бочки малых размеров тоже подойдут, но горючего из них будет выделяться мало из-за недостаточного количества сырья. Такие объемы производства вас не устроят;
  • организовывая производство биогаза в домашних условиях, вы вряд ли станете делать подогрев емкости, а вот утеплить ее нужно обязательно. Другой вариант – заглубить реактор в землю, выполнив тепловую изоляцию верхней части;
  • установить в реакторе ручную мешалку любой конструкции, выведя рукоятку через верхнюю крышку. Узел прохода ручки должен быть герметичным;
  • предусмотреть патрубки для подачи и выгрузки субстрата, а также для отбора биогаза.

Ниже показана схема биогазовой установки, размещенной ниже уровня земли:

1 – генератор горючего (емкость из металла, пластика или бетона); 2 — бункер для заливки субстрата; 3 – технический люк; 4 – сосуд, играющий роль водяного затвора; 5 – патрубок выгрузки отработанных отходов; 6 – патрубок отбора биогаза.

Как получить биогаз в домашних условиях?

Операция первая – измельчение отходов до фракции, чей размер не более 10 мм. Так гораздо легче приготовить субстрат, да и бактериям будет проще перерабатывать сырье. Получившаяся масса тщательно перемешивается с водой, ее количество – около 0.7 л на 1 кг органики. Как уже сказано выше, воду следует использовать только чистую. Затем субстратом заполняется биогазовая установка, сделанная своими руками, после чего реактор герметично закрывается.

Несколько раз в течении дня надо наведываться к емкости, чтобы перемешать содержимое. На 5-й день можно проверять наличие газа, и буде он появится, периодически откачивать его компрессором в баллон. Если этого вовремя не делать, то давление внутри реактора возрастет и брожение замедлится, а то и остановится вовсе. Спустя 15 дней надо производить выгрузку части субстрата и добавление такого же количество нового. Подробности можно узнать, просмотрев видео:

Заключение

Вполне вероятно, что простейшая установка для получения биогаза не обеспечит все ваши потребности. Но, учитывая нынешнюю стоимость энергоресурсов, это уже будет немалым подспорьем в домашнем хозяйстве, ведь за исходное сырье вам платить не приходится. Со временем, плотно занимаясь производством, вы сможете уловить все особенности и провести необходимое усовершенствование установки.

Возрастающая популярность альтернативных методов получения тепловой и электрической энергии привела к желанию многих владельцев загородных домов и коттеджей получить определенную автономию от внешних поставщиков энергии. Тем более, что «покупная» энергия проявляет постоянную тенденцию к повышению цены, и содержание загородного хозяйства с каждым днем обходится все дороже. Установка для получения биогаза является отличной альтернативой для внешних энергетических источников. Как минимум, она может обеспечить дом горючим газом для плиты, а при повышении мощности (если в наличии имеется достаточно своих или покупных отходов) – обеспечить и отопление, и электроэнергию как для дома, так и для всего приусадебного хозяйства.

Кому нужны биогазовые установки

Биогазовые установки используются для получения горючих газов из биологического сырья. Так что нужны они везде, где требуется использовать горючие газы. То есть, для получения тепловой и электрической энергии.
В первую очередь биогазовые установки необходимы для тех хозяйств, где имеется много сырья в виде биологических отходов. Таким образом можно не только сделать производство безотходным, но и значительно повысить его рентабельность – за счет самостоятельного производства энергии, отсутствия затрат на приобретение как тепловой, так и электрической энергии.

Владимир Рашин, конструктор биогазовой установки и фермер из Перми, на собственном опыте доказал, что аграрное производство, самостоятельно утилизирующее отходы с помощью соответствующего устройства, полностью обеспечивает свои потребности в тепловой и электрической энергии, а также в горючем газе. В его перепелином хозяйстве биогаз используется для обогрева помещений (как жилых, так и подсобных и производственных), для выработки электроэнергии, в кухонных плитах, а также для заправки автотранспорта – все автомобили фермы Рашина работают на биогазе. В данном случае основным сырьем для биогазовой установки является перепелиный помет. На выходе, кроме биогаза, получается еще и органическое удобрение, которое тоже приносит ферме дополнительный доход.

Биогазовые установки, подобные установке Владимира Рашина, могут значительно повысить рентабельность любого сельскохозяйственного производства. В качестве сырья для получения биогаза может быть использован не только навоз, но и различные отходы деревообрабатывающих производств (кора, опилки и так далее), и практически любые органические вещества.

Кроме того, биогазовые установки могут использоваться и в загородных домах и коттеджах, даже при отсутствии у таких хозяйств фермерской направленности. Бытовых отходов любого хозяйства будет достаточно, чтобы обеспечить сырьем индивидуальную биогазовую установку, и если не обеспечить хозяйство полностью тепловой и электрической энергией, то по крайней мере снизить затраты на приобретение такой энергии. К тому же, кроме бытовых отходов в любом загородном хозяйстве имеются еще и отходы с приусадебного участка (сорняки, обрезки веток и так далее). Ну а обеспечить горючим газом кухонную плиту можно даже с помощью мини-биогазовой установки в дачных условиях.

Принцип получения биогаза

Получение биогаза осуществляется путем анаэробного (то есть, без доступа кислорода) сбраживания биомассы, которое обеспечивается специальными бактериями. В процессе участвуют три вида бактерий: гидролизные, кислотообразующие и метанобразующие.

Биогазовая установка состоит из нескольких частей (емкостей). Сначала сырье поступает в предварительную емкость, где тщательно перемешивается и измельчается (в случае твердой фракции) до однородной массы. Затем измельченное сырье поступает в реактор (емкость, где осуществляется непосредственно брожение биомассы).

Реактор обычно изготавливается из железобетона, обладающего кислотоустойчивостью. Эта емкость полностью герметична. Для того, чтобы ускорить процесс брожения, жидкость в емкости подогревается и перемешивается. Чаще всего для обогрева реактора используется когенерационная установка – в такой установке необходимо охлаждение теплоэлектрогенератора, и отведенное тепло поступает в реактор. Также тепло может поступать от специального водогрейного котла.

После того, как процесс брожения завершен, из реактора выработанный газ поступает в газгольдер, где выравнивается давление, а затем биогаз поступает уже в теплоэлектрогенератор (газовый или дизель-газовый), в результате чего и производится тепловая или электрическая энергия.

Кроме биогаза в реакторе оседает твердая фракция – органические удобрения, которые затем могут быть использованы на полях. Также из реактора получают жидкие удобрения – после выделения газа. И жидкие, и твердые удобрения являются концентрированными, и активно используются в сельском хозяйстве.

Промышленные биогазовые установки имеют автоматическое управление. Автоматика отвечает и за поступление сырья в установку, и за перемешивание, контролирует температуру, работу генератора и так далее. Также подобные установки оснащаются аварийными факельными устройствами – на случай остановки двигателя, тогда газ просто сжигается. Кроме того, нередко промышленные биогазовые установки оснащаются линией для упаковки жидких удобрений, в этом случае удобрения разливаются в небольшие (до 1 л) бутылки.

Индивидуальная биогазовая установка

Принцип работы индивидуальной биогазовой установки такой же, как и у промышленной. Правда, мини-установки редко оснащают автоматическими устройствами для перемешивания субстрата и прочей автоматикой – из-за значительного удорожания бытовой установки при такой комплектации. Чаще всего в этих установках имеются только устройства контроля температуры, работы генератора и так далее, а все обслуживание мини-биогазовой установки осуществляется вручную.

Бытовые биогазовые установки применяются в основном для производства горючего газа для кухонных нужд, если в хозяйстве не имеется животноводческой или растениеводческой направленности. Однако, все больше проявляется тенденция к использованию мини-установок для обеспечения загородных домов и коттеджей полным энергетическим комплексом, то есть, не только «кухонным» газом, но и тепловой, и электрической энергией. Причем, это уже не зависит от наличия в хозяйстве крупного или мелкого скота, сырье для домашних биогазовых установок просто приобретается в ближайшем хозяйстве. Это может быть как навоз, так и отходы деревообрабатывающих производств.

Биогазовая установка своими руками

Строительство биогазовых установок, даже мини, для бытовых нужд, обходится недешево. И, хотя сроки окупаемости такого оборудования относительно невелики (5-7 лет), далеко не каждый хозяин готов или имеет возможность вложить необходимую сумму. Да, плюсы очевидны: через непродолжительное время с помощью мини-биогазовой установки можно получить практически полную автономию от покупных источников энергии, перевести свое хозяйство на самообеспечение, да еще и иметь в качестве дополнительных бонусов бесплатные удобрения. Однако, платить деньги нужно сегодня, а плюсы проявятся только через несколько лет. Поэтому многие владельцы загородных домов и коттеджей задаются вопросом: как сделать биогазовую установку самостоятельно?

Мини-биогазовая установка не так и сложна, и с ее сооружением вполне можно справиться. При этом экономится существенная сумма. К тому же, имеются проекты биогазовых установок, использующие подручные средства и материалы (например, с реактором-колоколом, причем, колокол может быть изготовлен из резины, и так далее). То есть, самодельные установки про производству биогаза – это приобретение желаемых бонусов за минимальные деньги.

При строительстве биогазовой установки необходимо произвести точный расчет – какова должна быть ее производительность. Для этого следует учесть всех желаемых потребителей биогаза (например, кухонную плиту, автомобильную технику и так далее). Если биогаз планируется использовать для получения электрической и/или тепловой энергии, то расчет должен включать в себя всех потребителей энергии. На основании расчета создается проект биогазовой установки.

Самодельные установки для производства биогаза широко представлены в Интернете. Можно найти и образцы расчетов, и чертеж устройства, и подробное описание. Огромный выбор устройств позволит изготовить как сложную установку с несколькими камерами, так и упрощенный вариант (например, такое простое устройство, как выгребная яма, накрытая резиновым колоколом с приспособлением для отвода газа). Каждый желающий сможет выбрать самодельную установку в соответствии со своими желаниями, возможностями и умениями. Особенно полезны в этом случае описания, сопровождаемые пошаговыми фотографиями или видео.

Изготовление биогазовой установки своими руками позволяет сэкономить до 50% стоимости устройства, что значительно ускоряет окупаемость оборудования. К тому же, изготовление для начала самой простой установки, позволяет оценить необходимость такого оборудования в хозяйстве, а также вкладывать деньги постепенно, что для многих значительно легче, чем сразу заплатить всю нужную сумму.

Как работает биогазовая установка?

Экология потребления.Усадьба: Выгодно ли производить биотопливо в домашних условиях в малых количествах в личном подсобном хозяйстве? Если у вас есть несколько металлических бочек и прочего железного хлама, а также бездна свободного времени и вы не знаете, как им распорядиться - да.

Предположим, природного газа в вашей деревне не было и не будет. А даже если есть, он денег стоит. Хотя и на порядок дешевле, чем разорительное отопление электричеством и жидким топливом. Ближайший цех по производству пеллет находится в паре сотен километров, везти накладно. Дрова купить с каждым годом всё сложнее, да и топить ими хлопотно. На этом фоне весьма заманчиво выглядит идея получать дармовой биогаз на собственном подворье из сорняков, куриного помёта, навоза от любимой свинки или содержимого хозяйского нужника. Достаточно лишь смастерить биореактор! По телевизору рассказывают, как экономные немецкие фермеры согревают себя «навозными» ресурсами и никакой «Газпром» им теперь не нужен. Вот уж где справедлива поговорка «с фекалий плёнку снимет». Интернет пестрит статьями и роликами на тему «биогаз из биомасс» и «биогазовая установка своими руками». Но о практическом применении технологии у нас мало что известно: про производство биогаза в домашних условиях говорят все, кому не лень, но конкретные примеры в деревне, так же, как и легендарный Ё-Мобиль на дороге, мало кто видел живьём. Попробуем разобраться, почему это так и каковы перспективы прогрессивных биоэнергетических технологий на селе.

Что такое биогаз + немного истории

Биогаз образуется в результате последовательного трёхступенчатого разложения (гидролиз, кислото- и метанообразование) биомассы различными видами бактерий. Полезная горючая составляющая - метан, может присутствовать также водород.

Процесс бактериального разложения, в результате которого образуется горючий метан

В большей или меньшей степени горючие газы образуются в процессе разложения любых остатков животного и растительного происхождения.

Ориентировочный состав биогаза, конкретные пропорции составляющих зависят от применяемых сырья и технологии

Люди издавна пытаются использовать этот вид природного топлива, в средневековых хрониках содержатся упоминания о том, что жители низменных районов нынешней Германии ещё тысячелетие назад получали биогаз из гниющей растительности, погружая в болотную жижу кожаные мехи. В тёмные средние века и даже просвещённые столетия наиболее талантливые метеористы, благодаря специально подобранной диете умевшие пустить и вовремя поджечь обильный метановый flatus, вызывали неизменный восторг публики на весёлых ярмарочных представлениях. Промышленные биогазовые установки с переменным успехом начали строить с середины XIX века. В СССР в 80-е годы прошлого века была принята, но не реализована госпрограмма по развитию отрасли, хотя с десяток производств всё же запустили. За рубежом технология получения биогаза совершенствуется продвигается относительно активно, общее число работающих установок исчисляется десятками тысяч. В развитых странах (ЕЭС, США, Канада, Австралия) это высокоавтоматизированные крупные комплексы, в развивающихся (Китай, Индия) - полукустарные биогазовые установки для дома и небольшого крестьянского хозяйства.

Процентное соотношение числа биогазовых установок в странах Евросоюза. Отчётливо видно, что технология активно развивается только в Германии, причина - солидные государственные дотации и налоговые льготы

Какое применение находит биогаз

Понятно, что в качестве топлива, раз он горит. Отопление производственных и жилых зданий, генерация электроэнергии, приготовление пищи. Однако не всё так просто, как показывают в роликах, разбросанных по ютюбу. Биогаз должен стабильно гореть в теплогенерирующих установках. Для этого его параметры газовой среды необходимо привести к довольно жёстким стандартам. Содержание метана должно быть не ниже 65% (оптимум 90-95%), водород отсутствовать, водяные пары выведены, углекислый газ удалён, оставшиеся составляющие инертны к высоким температурам.

Использовать биогаз «навозно-животного» происхождения, не освобождённый от зловонных примесей, в жилых домах невозможно.

Нормируемое давление - 12,5 бар, при значении менее 8-10 бар автоматика в современных моделях отопительного оборудования и кухонного оборудования прекращает подачу газа. Очень важно, чтобы характеристики поступающего в теплогенератор газа были стабильными. В случае скачка давления за пределы нормы сработает клапан, включать обратно придётся вручную. Плохо, если используются устаревшие газовые приборы, не оснащённые системой газ-контроля. В лучшем случае может выйти из строя горелка отопительного котла. Худший вариант - газ потухнет, но его поступление не прекратится. А это уже чревато трагедией. Обобщим сказанное: характеристики биогаза необходимо привести к необходимым параметрам, а технику безопасности соблюдать неукоснительно. Упрощённая технологическая цепочка получения биогаза. Важный этап - сепарация и газоотделение

Какое сырьё используют для получения биогаза

Растительное и животное сырьё

  • Растительное сырьё отлично подходит для производства биогаза: из свежей травы можно получить максимальный выход топлива - до 250 м3 на тонну сырья, содержание метана до 70%. Несколько меньше, до 220 м3 можно получить из кукурузного силоса, до 180 м3 из свекольной ботвы. Пригодны любые зелёные растения, хороши водоросли, сено (100 м3 из тонны), но пускать ценные корма на топливо имеет смысл лишь при их явном избытке. Невелик выход метана из жома, образующегося при изготовлении соков, масел и биодизеля, но и материал дармовой. Недостаток растительного сырья - длительный производственный цикл, 1,5-2 месяца. Можно получать биогаз и из целлюлозы, других медленно разлагающихся растительных отходов, но эффективность крайне низкая, метана образуется мало, производственный цикл очень длительный. В заключение скажем, что растительное сырьё обязательно должно быть мелко измельчено.
  • Сырьё животного происхождения: традиционные рога и копыта, отходы молокозаводов, боен и перерабатывающих предприятий также пригодно и тоже в измельчённом виде. Самая богатая «руда» - животные жиры, выход высококачественного биогаза с концентрацией метана до 87% достигает 1500 м3 на тонну. Тем не менее, животное сырьё в дефиците и, как правило, ему находят иное применение.

Горючий газ из экскрементов

  • Навоз дёшев и во многих хозяйствах имеется в достатке, однако выход и качество биогаза значительно ниже, чем из других видов. Коровьи лепёшки и лошадиные яблочки можно использовать в чистом виде, ферментация начинается сразу, выход биогаза 60 м2 на тонну сырья с невысоким содержанием метана (до 60%). Производственный цикл короткий, 10-15 дней. Свиной навоз и куриный помёт токсичны - чтобы полезные бактерии могли развиваться, его смешивают с растительными отходами, силосом. Большую проблему представляют моющие составы, ПАВы, которые применяются при уборке животноводческих помещений. Вкупе с антибиотиками, которые в большом количестве попадают в навоз, они угнетают бактериальную среду и тормозят образование метана. Не применять дезинфицирующих средств вовсе невозможно и агропредприятия, вложившиеся в производство газа из навоза, вынуждены искать компромисс между гигиеной и контролем над заболеваемостью животных с одной стороны и поддержанием продуктивности биореакторов с другой.
  • Человеческие экскременты, совершенно бесплатные, тоже подходят. Но использовать обычные канализационные стоки нерентабельно, слишком мала концентрация фекалий и высока дезинфицирующих средств, ПАВ. Технологи утверждают, что их можно было бы использовать лишь в случае, если в канализацию будут поступать «продукты» только из унитаза при условии, что смыв чаши осуществляется лишь одним литром воды (стандарт 4/8 л). И без моющих средств, естественно.

Дополнительные требования к сырью

Серьёзная проблема, с которой сталкиваются хозяйства, установившие у себя современное оборудование для получения биогаза - сырьё не должно содержать твёрдых включений, случайно попавший в массу камень, гайка, кусок проволоки или доска закупорит трубопровод, выведет из строя дорогостоящий фекальный насос или мешалку. Нужно сказать, что приведенные данные по максимальному выходу газа из сырья соответствуют идеальным лабораторным условиям. Чтобы приблизиться в реальном производстве к этим цифрам, необходимо соблюсти ряд условий: поддерживать необходимую температуру, периодически перемешивать мелко измельчённое сырье, вносить добавки, активизирующие ферментацию и т.д. На кустарной установке, собранной по рекомендациям статей о «получении биогаза своими руками», едва лишь можно достичь 20% от максимального уровня, высокотехнологические установки позволяют добиваться значений в 60-95%.

Достаточно объективные данные по максимальному выходу биогаза для различных типов сырья

Устройство биогазовой установки


Выгодно ли заниматься производством биогаза

Мы уже упоминали, что в развитых странах строят крупные промышленные установки, а в развивающихся главным образом мелкие, для небольшого хозяйства. Объясним, почему так:


Имеет ли смысл производить биотопливо в домашних условиях

Выгодно ли производить биотопливо в домашних условиях в малых количествах в личном подсобном хозяйстве? Если у вас есть несколько металлических бочек и прочего железного хлама, а также бездна свободного времени и вы не знаете, как им распорядиться - да. Но экономия, увы, мизерная. А уж вкладывать деньги в высокотехнологичное оборудование при небольших объёмах поступления сырья и производства метана не имеет смысла ни при каком раскладе.

Очередной ролик отечественного Кулибина

ПОДПИСЫВАЙТЕСЬ на НАШ youtube канал Эконет.ру, что позволяет смотреть онлайн, скачать с ютуб бесплатно видео об оздоровлении, омоложении человека..

Ставьте ЛАЙКИ, делитесь с ДРУЗЬЯМИ!

https://www.youtube.com/channel/UCXd71u0w04qcwk32c8kY2BA/videos

Без перемешивания сырья и активации процесса ферментации выход метана составит не более 20% от возможного. Значит, в лучшем случае с 100 кг (загрузка бункера) отборной травы можно получить 5 м3 газа без учёта сжатия. И будет хорошо, если содержание метана превысит 50% и не факт, что он будет гореть в теплогенераторе. По утверждению автора, сырьё загружается ежедневно, то есть производственный цикл у него - одни сутки. На самом деле необходимое время - 60 суток. Количества полученного изобретателем биогаза, содержащегося в 50-литровом баллоне, который он сумел заполнить, в морозную погоду для отопительного котла мощностью 15 кВт (жилой дом около 150 м2) хватит на 2 минуты.

Тем, кого возможность производства биогаза заинтересовала, рекомендуется внимательно изучить проблему, особенно с финансовой точки зрения, с техническими вопросами обратиться к специалистам, имеющим опыт подобных работ. Весьма ценной будет практическая информация, полученная в тех хозяйствах, где биоэнергетические технологии уже используются какое-то время. опубликовано

Тот, кто живёт за городом, хорошо знает, что отапливать дом и готовить пищу пока, при нынешних ценах на энергоносители, выгоднее всего магистральным газом. Но подключение к трубе с «голубым топливом» может влететь в копеечку, даже если магистраль проходит по границе с участком. Поэтому домовладельцы ищут способы как сэкономить и при этом не превратиться в истопника или кочегара. Команда инженеров из Израиля предлагает одно из решений проблемы, «чем заменить баллонный газ для плиты». Для этого энтузиасты альтернативной энергии разработали портативную установку для производства биогаза в домашних условиях.

Яир Теллер

Наша команда предлагает использовать отходы еды, жидких удобрений и навоза для производства биогаза. Конечно, мощности установки общим объёмом около 2 куб. м недостаточно, чтобы извлекать из биомассы газ, которого хватит для системы отопления. Но, как показала практика, выработанного газа хватает, чтобы подключить к установке портативную газовую плитку и готовить на ней еду.

Установка представляет собой закрытую ёмкость - реактор объёмом 1200 литров, заполненный водой, в который сбрасываются отходы.

Установка сделана из гибкого высокопрочного растягивающегося материала.

Сверху монтируется вторая ёмкость для сбора полученного газа объёмом на 700 литров.

По словам разработчиков, всё, что нужно пользователю - через специальный приёмник поместить в установку органические отходы, а остальное сделают бактерии.

Яир Теллер

Из органических бытовых отходов среднестатистической семьи можно получить энергию - газ-метан, которого хватит для работы одноконфорочной газовой плиты в течение трёх часов в день. Бактерии, находящиеся в реакторе, перерабатывают органические вещества и превращают их в биогаз и высококачественные жидкие удобрения, которые можно использовать для выращивания растений на огороде.

В разобранном виде биогазовая установка помещается в коробку размером 1000х450х400 мм.

Длина газового шланга может достигать 20 метров. Этого достаточно, чтобы разместить реактор на некотором удалении от дома, т.к. биогаз состоит из метана, углекислого газа и неприятно пахнущего сероводорода.

Монтаж установки занимает менее 1 часа.

После сборки реактор наполняется чистой водой, а для быстрого «запуска» процесса брожения, помимо биомассы - сырья, в установку сбрасывается специальный набор бактерий. После выхода на рабочий режим «подпитка» бактериями уже не требуется.

Особенности переработки органических отходов в приусадебных биоустановках. Переработка органических отходов без доступа кислорода - высокоэффективный способ получения качественных органических удобрений и экологически чистого энергоносителя, которым является биогаз. Причем такой способ переработки отходов - абсолютно безопасный для окружающей среды.

Биогаз - это газ, который приблизительно на 60 % состоит из метана и на 40 % из углекислого газа (СО 2). Разнообразные виды микроорганизмов метаболизируют углерод из органических субстратов в безкислородных условиях (анаэробный) (табл.4).

Выход биогаза (м3) из одной тонны органического вещества

Вид органического сырья

Выход газа, м3 из тонны сырья

Навоз КРС

Навоз свиней

Птичий помет

Конский навоз

Овечий навоз

Кукурузный силос

Травяной силос

Свежая трава

Листья сахарной свеклы

Силосованные листья сахарной свеклы

Это процесс так называемого гниения или безкислородного брожения.

Метановое сбраживание - это сложный анаэробный процесс (без доступа воздуха), который происходит в результате жизнедеятельности микроорганизмов и сопровождается рядом биохимических реакций. Температура сбраживания составляет 35 °С (мезофильный процесс) или 50°С (термофильный процесс). Этот метод стоит оценивать как локальное природоохранное мероприятие, которое в то же время улучшает и энергетический баланс хозяйства, поскольку при этом можно организовать малоотходное энергосберегающее хозяйство.

Во время переработки жидкого навоза влажностью до 90-91 % в установке метанового сбраживания получают три первичных продукта: обезвоженный шлам, биогаз, жидкие стоки. Обезвоженный шлам не имеет запаха, не содержит патогенной микрофлоры, всхожесть семян сорняков сведено к нулю. В целом обезвоженный шлам - это высококонцентрированное обеззараженное дезодорированное органическое удобрение, пригодное для непосредственного внесения в грунт. Он используется и как сырье для производства биогумуса. Метановое сбраживание позволяет повысить качество субстрата. Это происходит за счет того, что во время метанового брожения без доступа кислорода аммиачный азот переходит в аммонийную форму, что в дальнейшем, в процессе аэробной ферментации, обеспечивает уменьшение потерь азота. Полученный на основе сброженного навоза и помета субстрат способствует увеличению урожайности сельскохозяйственных культур на 15-40 %.

С 1920 года биогаз широкомасштабно получали из канализационных сточных вод. В европейских городах с 1937 года городские парки грузовиков начали переоборудовать для работы на биогазе. Во время второй мировой войны и в послевоенное время исследовалось и пропагандировалось производство биогаза из органических отходов. Из-за снижения стоимости нефти развитие биогазовых технологий в 60-х годах прекратилось. В странах, которые развиваются, приобрели распространения простые биогазовые установки. В Китае уже созданы миллионы таких установок - "приусадебного"типа. В Индии построено около 70 млн. установок. В развитых странах после кризиса 1973 года получили распространение крупнообъемные биогазовые установки. Появилась возможность быстро сбраживать канализационные стоки в анаэробных фильтрах при относительно низкой температуре брожения.

Среди многообразия биогазовых установок, которые сегодня работают во многих странах мира, встречаются установки с объемом реактора от нескольких до нескольких тысяч кубометров. Условно их можно разделить на:

Малые, или приусадебные - объем реактора до 20 м3;

Фермерские - 20-200 м3;

Средние - 200-500 м3;

Большие - свыше 500 м3

Преимущества биогазовых установок:

Агрономические - возможность получать высокоэффективные органические удобрения;

Энергетические - производство биогаза;

Экологические - обезвреживание негативного влияния отходов на окружающую среду;

Социальные - улучшение бытовых условий, что особенно актуально для жителей сельской местности.

Во многих странах широкомасштабно используют потенциал, который дает такой способ переработки отходов. К сожалению, в Украине еще и сейчас он остается несколько экзотичным и на практике применяется в единичных случаях, в частности для анаэробной переработки органических отходов на удобрение, что актуально в нынешних условиях. Даже энергетический кризис не стимулировал развитие этой технологии получения энергии, тогда как в некоторых странах, например Индии и Китае, уже длительное время действуют национальные программы переработки отходов в биоустановках. Весомый процент энергетических потребностей во многих странах Европы обеспечивает именно эта технология, а в Англии еще до 1990 года планировалось обеспечивать сельское население газом "собственного производства".

Рис 41. Биогазовая установка Рис 42. Индийская

в Эфиопии биогазовая установка

Не отбрасывая значение крупнообъемных установок, стоит обратить пристальное внимание на преимущества малых биогазовых установок. Они дешевые, доступные для строительства индивидуальным и промышленным способами, простые и безопасные в обслуживании, а продукты переработки в них органических отходов - биогаз и высококачественные органические удобрения - можно использовать непосредственно на потребности фермерского хозяйства без расходов на их транспортировку.

К преимуществам малых биогазовых установок следует отнести доступность местных материалов для сооружения установки, возможность обслуживания силами владельца, отсутствие потребности в учете, транспортировке на далекие расстояния и подготовке к использованию биогаза.

Небольшие биогазовые установки имеют и определенные недостатки, сравнительно с большими. Здесь тяжелее автоматизировать и механизировать процессы подготовки субстрату и работу самих установок, проблематичным является измельчение субстрату, его подогрев, загрузка и разгрузка, хранение до и после обработки, которая предопределяет потребность в емкостях для складирования ферментированных отходов. Кроме того, чтобы довести субстрат до необходимой для ферментации концентрации, следует иметь еще одну емкость и определенное количество воды. Для уменьшения затрат воды стоит предусмотреть возможность ее повторного использования. Возникают проблемы и с обезвоживанием ферментированной массы. Чаще всего узлы, которые используются для механизации работ (измельчение, смешивание, подогрел, подача продуктов переработки и тому подобное) на больших установках, непригодны к применению на малых из-за своих технических параметров и высокой стоимости.

Приусадебные установки производят небольшие объемы биогаза, потому более сложно организовать процессы его обезвоживания и очистки от примесей негорючих составляющих.

К проблемам эксплуатации малых биогазовых установок следует отнести неравномерность процесса получения биогаза в разные времена года. В летний период эксплуатации проблемы возникают из-за того, что на подогрев субстрата при наличии газового нагревателя будет тратиться меньше биогаза собственного производства, его товарное количество будет большим чем в зимний период. Летом, когда животных выгоняют на пастбище, уменьшается и количество отходов - сырья для работы биореактора. В составе таких установок нецелесообразно предусматривать узлы для значительного накопления биогаза - когда газа будет производиться больше чем нужно для хозяйства, его придется просто выпускать в атмосферу.

Но невзирая ни на что, анаэробная переработка органических отходов - высокоэффективный и выгодный способ получения качественных органических удобрений и экологически чистого энергоносителя. Малые приусадебные биогазово-гумусные установки с реактором до 20 м3 можно рекомендовать к установке практически на каждом сельском дворе, где накапливаются органические отходы.

Среди основных современных тенденций развития биогазовых технологий можно выделить такие:

Сбраживание поликомпонентных субстратов;

Применение "сухого" типа анаэробной ферментации для производства биогаза из энергетических растительных культур;

Создание централизованных биогазовых станций большой производительности и тому подобное.

Существуют четыре основных типа реализации технологии анаэробного сбраживания, а именно: крытые лагуны и метантанки, работающие в режиме реактора-смесителя и реактора с носителем биомассы. Техническая и экономическая целесообразность применения того или иного типа зависит, главным образом, от влажности субстратов и климатических условий в районе расположения биогазовой установки. Тип примененного биореактора отражается на общей длительности процесса метанизации.

Крытые лагуны целесообразно применять в условиях теплого и умеренного климата - для жидких навозных стоков, которые не содержат включений со значительной гидравлической крупностью. Такие реакторы специально не обогреваются, а потому их считают не интенсивными. Длительность распада органического вещества к стабилизации отходов значительно превышает аналогичную в реакторах с интенсивным режимом сбраживания.

К реакторам с интенсивным режимом сбраживания относят обогревающиеся реакторы разных типов. Существуют два принципиальных отличия между конструкциями таких реакторов, которые зависят от характеристики сбраживаемых субстратов. В реакторах первого типа сбраживают преимущественно субстраты с доминированием жидких навозных отходов. Самый распространенный тип таких реакторов - цилиндрические бетонные или стальные с центральной колонной, перекрытые эластичной мембраной, которая служит для герметизации сооружения и накопления образуемого биогаза. Такие реакторы работают по принципу полного смешивания, когда каждая свежая порция смеси исходных субстратов смешивается со всей сбраживаемой массой реактора. Принципиальная конструкция таких реакторов отображена на рисунке 43.

Рис.43 . Вертикальный тип метантанка

2 - перелив субстрата;

3 - помпа подачи воздуха;

4 - теплоизоляция метантанка;

5 - центральная колонна, которая поддерживает мембрану газгольдера от падения;

6 - перемешивающее устройство;

7 - привод перемешивающего прибора;

8 - площадка обслуживания;

9 - мембрана газгольдера;

10 - уровень наполнения метантанка;

11 - высота поднятия мембраны газгольдера;

12 - подогревательные трубопроводы

Другой тип реакторов для жидких субстратов - горизонтального типа, работающие по принципу вытеснения. В таких сооружениях исходная смесь субстрата подается с одной стороны, а отводится из другого. При этом органическое вещество испытывает последовательные превращения за счет консорциума микроорганизмов, уже имеющихся в исходном субстрате. Такие реакторы можно считать менее эффективными по интенсивности процесса, однако в них, за счет разнесения в пространстве точек входа свежих субстратов и выхода сброженных, удается минимизировать риск выхода вместе со сброженным субстратом (который удаляется из метантанка) несброженной порции свежих субстратов. Реакторы такого типа целесообразно применять для небольших объемов сбраживаемых субстратов.

Реакторы следующего типа предназначены для метанизации сухих органических смесей, в которых преобладают косубстраты из энергетических растительных культур. Реакторы такого типа приобретают распространения вместе с распространением технологий "сухой" ферментации энергетических культур растений. Характерной особенностью таких метантанков является то, что их проектируют как реакторы полного вытеснения.

Из технологических позиций процесс получения биогаза из органического вещества является многостадийным. Он состоит из процесса подготовки субстратов к сбраживанию, процесса биологического разложения вещества, дображивания (по желанию), обработки сброженного субстрата и добытого биогаза, подготовки их к использованию или утилизации на месте. На рисунке 2 приведена принципиальная технологическая схема типичной фермерской биогазовой станции для совместного сбраживания навозных отходов и органических косубстратов.

Рис. 44 . Принципиальная технологическая схема типичной фермерской биогазовой станции

Подготовка субстрата к сбраживанию предусматривает сбор и гомогенизацию (перемешивание) субстрата. Для сбора субстрата, в зависимости от его проектного количества, строят накопительную емкость, обустроенную специальным перемешивающим устройством и помпой, которая в дальнейшем будет подавать подготовленный субстрат к реактору (метантанку). В зависимости от типов субстратов, система подготовки вещества может быть усложнена модулями измельчения или стерилизации косубстратов (при необходимости).

После предварительной подготовки предварительно рассчитанное количество субстрата перекачивают с помощью насосов системой трубопроводов к реактору. В реакторе (метантанке) субстрат поддается деструкции при участии микробиоценоза на протяжении расчетного времени, в зависимости от избранного температурного режима. Метантанк оборудуют системой подогревательных трубопроводов, перемешивающим устройством (для устранения возможности расслоения среды и возникновения корки, равномерного деления питательных для микробиологической среды веществ и выравнивания температуры субстрата), системами отвода добытого биогаза и отвода сброженного субстрата. Кроме того, метантанк оборудуют системой подачи воздуха, небольшое количество которого нужно для очистки биогаза от сероводорода биохимическим осаждением.

Степень распада органического вещества на момент завершения активного газообразования приближается до 70-80%. В этом состоянии сброженная органическая масса может подаваться на систему сепарации для деления на твердую и жидкую части в специальном сепараторе.

Для утилизации добытого биогаза существует несколько схем, основным из которых является сжигание биогаза в когенерационной установке непосредственно на объекте, с добычей электроэнергии и теплоты, которые используются на собственные потребности фермы и биогазовой станции. Кроме того, часть электрической энергии передается в электросети.

Основным субстратом при анаэробном сбраживании, как правило, является навоз животных и птицы, а также отходы убойных цехов. Субстраты такого происхождения содержат больше всего микроорганизмов, необходимых для организации и хода процесса метанового брожения, поскольку они присутствуют уже в желудке животных.

Как свидетельствует опыт Германии, большинство установок работают на смеси косубстратов с разным их дольным соотношением. В стране реализовали специальную программу сбора данных из более чем 60 показательных работающих биогазовых станций и проанализировали их. Существуют достаточно много станций (около 45%), где в качестве основного субстрата используют навоз объеме 75-100% от общего объема смеси. Вместе с тем есть также много станций, где содержание навозных стоков менее 50%. Это указывает на то, что биогазовые установки в Германии при производстве биогаза в значительной мере используют потенциал не только навозных отходов, но и разнообразных дополнительных косубстратов.

Анализ данных о производстве биогаза на этих станциях показал, что с увеличением частицы косубстратов в смеси увеличивается удельный выход метана. Самым распространенным среди косубстратов разных типов является силос кукурузы. Его закупают у фермеров в измельченном виде, готовом к загрузке в реакторы, и складируют на открытых огражденных площадках. Кроме силоса кукурузы, достаточно широко используют и травяной силос, полову зерновых, жировые отходы, скошенную траву, молочную сыворотку, пищевые и овощные отходы и тому подобное.

В сознании украинского фермера биогазовая установка крепко связана исключительно с переработкой отходов больших ферм. Главным стимулом для строительства БГУ в Украине, чаще всего не слишком эффективным, остается необходимость очистки сточных вод. Интересной для фермера является и возможность получения высококачественных органических удобрений. Энергетические аспекты получения биогаза остаются недоиспользованными из-за низких тарифов на электрическую и тепловую энергию, в результате чего окупаемость БГУ за счет продажи энергии оказывается очень низкой.

Конечно, для того, чтобы биогазовые технологии начали активно развиваться, нужно узаконить систему "зеленых" тарифов на все виды возобновляемой электрической и тепловой энергии, как это уже состоялось во многих странах мира, и не только в развитых.

Другой путь повышения эффективности биогазовых установок заключается в активном использовании для сбраживания дополнительных субстратов, например силоса кукурузы. Прекрасным примером эффективной биогазовой установки является БГУ немецкой компании Енвитек Биогаз. Стандартная БГУ компании комплектуется реактором 2500 м3 и когенерационной установкой электрической мощностью 500 кВт. Базовым поставщиком сырья для такой установки может быть обычная для Германии свиноферма с поголовьем 5000 свиней. Повышение выхода биогаза достигается за счет добавления силоса кукурузы. Для непрерывной работы установки на протяжении года нужно 6000 тонн силоса, или 300 гектаров земли при урожайности силоса 20 т/га.

Краткая техническая характеристика биогазовых компании ООО

Биодизельднепр"

Марка установки

Объем реактора, м 3

Установленная мощность

Выход биогаза

Производство электроэнергии, кВт

Производство

тепла, кВт

Биобензин

Жидкие стоки - обеззараженная дезодорирована жидкость, которая содержит до 1 % зависших веществ и имеет в составе удобряющие элементы. Фугат - прекрасная органическая подпитка для сельскохозяйственных культур, использование которой удобно как при поливе, так и при орошении. После доочистки жидкие стоки можно использовать даже как техническую воду.

Биогаз используется для производства электрической и тепловой энергии. Сжигая 1 м3 биогаза, можно получить 2,5-3 кВт/час электроэнергии и 4-5 кВт тепловой энергии. При этом 40-60 % биогаза используется на технологические потребности установки. Биогаз под давлением 200-220 атм. можно использовать для заправки автотранспорта.

Кроме производства энергии и удобрений при сбраживании отходов, биогазовые установки исполняют роль очистных сооружений - уменьшают химическое и бактериологическое загрязнение почвы, воды, воздуха и переделывают органические отходы в нейтральные минерализованные продукты. Сравнительно с энергией малых рек, ветровой и солнечной энергией, где установки используют экологически чистые источники энергии (пассивно чистые установки), биоэнергетические установки (БЭУ) являются активно чистыми, что устраняет экологическую опасность продуктов, которые являются для них сырьем.

В мире используются много типов биогазовых установок. Они содержат устройства для приема навоза растительной массы, метатанки и энергосиловые блоки.

Отличаются между собой метантанки конструкцией устройств для перемешивания массы во время сбраживания. Самое частое перемешивание осуществляют с помощью вала с лопастями, который обеспечивает послойное перемешивание сбраживаемой массы. Кроме того, перемешивают гидравлическими и механическими устройствами, которые обеспечивают забор массы из нижних слоев метантенка и подачу в верхнюю часть. Биогазовые установки, которые работают в интенсивном режиме, имеют камеры аэробного (кислородного) брожения, где происходит подготовка массы к сбраживанию, и анаэробному (метанового) брожению. Есть также устройства для перемешивания массы, выполненные в виде вала с лопатками, размещенного по вертикальной оси корпуса и прикрепленного к верхней части плавающего газового колпака. Перемешивание массы в реакторе происходит за счет вращения вала с лопатками и перемещения плавающего перекрытия. Некоторые устройства обеспечивают лишь разбивание корки, которая образуется на поверхности массы обрабатываемой детали. Перемешивания достигают также путем использования перегородок и сифона двустороннего действия, которое обеспечивает попеременное переливание массы из нижней зоны одной секции в верхнюю второй и, наоборот, за счет регуляции давления газа. Иногда метантанки выполняет в виде сферы или цилиндра, которые должны возможность вращаться вокруг своей геометрической оси.

В Украине в связи с резким подорожанием природного газа, исчерпаемости его ресурсов усилился интерес к биогазовым технологиям. На сегодня в усадьбах и небольших фермерских хозяйствах страны еще не используют небольшие биогазовые установки. В то же время, например, в Китае и Индии построены и успешно эксплуатируются миллионы мелких метантанков. В Германии из 3711 действующих биогазовых установок около 400 составляют фермерские биогазовые установки, в Австрии их более 100.

Рис.45. Немецкая биогазовая установка (фермерская)

Рис.46 Схема биогазовой установки для фермерского хозяйства :

1 - сборники для гноя (схематически); 2 - система загрузки биомассы; 3- реактор 4 реактор досбраживания; 5 - субстратор; 6 - система отопления; 7 - силовая установка; 8 - система автоматики и контроля; 9 - система газопроводов.

Рис.47 Схема биогазовой установки для фермерского хозяйства

По показаниям ветеранов Великой Отечественной войны, во время освобождения Румынии они видели на многих крестьянских дворах небольшие примитивные биогазовые установки, которые производили биогаз, используемый для бытовых потребностей.

Из небольших биогазовых установок следует назвать установки, разработанные компанией ООО "Биодизельднепр" (г. Днепропетровск). Они предназначены для переработки путем анаэробного сбраживания (без доступа кислорода) органических отходов приусадебных и фермерских хозяйств. Такие установки позволяют перерабатывать ежесуточно 200-4000 кг отходов в непрерывном режиме или 1000-20000 кг- циклический, на протяжении пяти суток. При этом, обеспечивается получение не менее 3м3 биогаза на 1 м3 объема реактора, который может быть использован в установках для получения тепла или электроэнергии, необходимой для покрытия энергетических потребностей установки; для систем газообеспечения (освещение помещений, приготовления еды), отопления и горячего водообеспечения хозяйства; в установках синтеза биоэтанола и биодизельного топлива, а также соответствующего количества высококачественного органического удобрения, готового для внесения в почву.

Производственно-коммерческая фирма "Днепр-Десна» (г. Днепропетровск) разработала малую биоэнергетическую установку "Биогаз-6МГС 2", предназначенную для частного хозяйства (3-4 коровы, 10-12 голов свиней, 20-30 голов птицы). Производительность этой установки составляет приблизительно 11 м 3 биогаза за сутки. Такое количество газа покрывает потребности в отоплении помещения площадью 100 м 2 и горячей воде для семьи из пяти человек.

Заслуживает на внимание опыт внедрения небольшой биогазовой установки в поселке Лески Кенийского района Одесской обл. Биогазовая установка разработана и изготовлена частной фирмой в Днепропетровске.

Установка монтировалась в пределах реализации проекта "Модель утилизации отходов животноводства в регионе дельты Дуная", разработанного группой одесских неправительственных организаций в рамках программы малых экологических проектов при финансовой поддержке британского фонда окружающей "среды для Европы" и при содействии министерства по делам охраны окружающей среды, продовольствия и сельского хозяйства Британии и британского совета.

При нормальной загрузке и эксплуатации биогазовая установка, объем реактора которой составляет 3 м3, сможет выдавать до 3 м3 биогаза в сутки за счет переработки отходов от 100 голов птицы, или от 10 свиней, или от 4 коров. Это минимальные требования к работе установки.

Реактор установлен на поверхности земли. Это связано, во-первых, с конструкцией реактора. Загрузка в него биологического сырья осуществляется снизу, через экструдер, а сливание отработанного материала - через верх, что и отличает отмеченную конструкцию от других, в которых загрузка идет сверху, а отбор - снизу. Второй причиной наземного размещения является высокий уровень почвенных вод в селе - на глубине 50 см. Зимой подогрев навоза в реакторе осуществляется за счет электроэнергии, а летом хватает энергии солнца.

Получаемый газ используется, в первую очередь, для приготовления еды - газопровод подведен к летней кухне. Нужно поддерживать в реакторе температуру 30-35°С и следить за выработкой биогаза. Переработанный в биореакторе навоз необходимо выгружать своевременно.

Как уже отмечалось, в западной Европе в фермерских хозяйствах животноводческого направления широко внедряются биогазовые установки. Особенностью таких установок является введение в их состав энергосиловых блоков, где биогаз превращается в электроэнергию, и использование, кроме навоза, растительной массы.

Для подачи растительной массы в метантанки целесообразно использовать небольшие питатели. Вместимость приемного бункера такого питателя составляет 4 м3, общая длина конвейера - 6 м; мощность привода - 7,5 кВт.

Для комплектации фермерских биогазовых установок может быть эффективно использован мини-энергосиловой блок "С-ВОХ50". Электрическая мощность такого энергосилового блока составляет от 25 до 48 кВт; тепловая мощность - от 49 до 97 кВт.

Германия предлагает небольшие компактные биогазовые установки мощностью 30 и 100 кВт, которые рассчитаны на использование навоза и кукурузного силоса. Установка на 30 кВт включает накопитель-погрузчик на 5 м3 твердой органической массы, бетонный ферментер на 315 м3 и УШ-газовый мотор мощностью 30 кВт электрической и 46 кВт тепловой энергии. Для обеспечения работы биогазовой установки на 30кВт в случае использования смеси 50 % навоза и 50 % силоса необходимо иметь 5-7 га кукурузы. Установка на 100 кВт имеет приемник-питатель кукурузного силоса вместимостью до 20 м3, ферментатор вместимостью 1200 м3 и газмотор имей мощностью 100 кВт электрической и 108 кВт тепловой энергии. При использовании для обеспечения работы биогазовой установки на 100 кВт смеси 50 % навоза и 50 % кукурузного силоса нужно иметь 30 га кукурузы.

Следует отметить, что, внедряя биогазовые установки, зарубежные фирмы применяют индивидуальный подход к каждому фермеру. Для конкретного хозяйства, после соответствующего обследования имеющихся видов и ресурсов биомассы и определения основных целей использования установки, разрабатывается или подбирается соответствующая технология (технологический режим), на основе чего проектируется установка (технологическая линия). Комплектация зависит от избранной технологии. Большинство фирм разрабатывают и монтируют биогазовые установки "под ключ". Большое внимание при использовании биогазовых установок уделяется технологиям подготовки биомассы к сбраживанию, поскольку от качества сырья зависят энергетические показатели. Для эффективного управления биогазовой установкой целесообразно использовать измерительную и регулировочную техники.

Наиболее эффективной технологией считается сбраживание с превращением энергии биогаза в электрическую и тепловую.