Усилитель радиочастоты схема. Усилители радиочастоты и промежуточной частоты радиоприемного устройства

УСИЛИТЕЛИ РАДИОЧАСТОТЫ И ПРОМЕЖУТОЧНОЙ ЧАСТОТЫ РАДИОПРИЕМНОГО УСТРОЙСТВА

Наименование параметра Значение
Тема статьи: УСИЛИТЕЛИ РАДИОЧАСТОТЫ И ПРОМЕЖУТОЧНОЙ ЧАСТОТЫ РАДИОПРИЕМНОГО УСТРОЙСТВА
Рубрика (тематическая категория) Связь

Усиление принимаемых радиосигналов в приемном устройстве осу­ществляется в его преселœекторе, ᴛ.ᴇ. на радиочастоте, и после преоб­разователя частоты - на промежуточной частоте. Соответственно раз­личают усилители радиочастоты (УРЧ) и усилители промежуточной час­тоты (УПЧ). В этих усилителях, вместе с усилением должна обеспечивать­ся частотная избирательность приемника. Для этого усилители содер­жат резонансные цепи: одиночные колебательные контуры, фильтры на связанных контурах, различные типы фильтров сосредоточенной избирательности. Усилители радиочастоты с переменной настройкой обыч­но выполняют с избирательной системой, аналогичной примененной во входной цепи приемника, чаще всœего это одноконтурные избирательные цепи.

В усилителях промежуточной частоты находят применение сложные типы избирательных систем, обладающие АЧХ близкими к прямоугольным, такие, как электромеханические фильтры (ЭМФ), кварцевые фильтры (КФ), фильтры на поверхностных (объемных) акустических волнах (ПАВ, ПОВ) и др.

В большинстве современных приемников используют однокаскадные УРЧ. Реже, при высоких требованиях к избирательности и коэф­фициенту шума, УРЧ могут содержать до трех каскадов.

К числу базовых электрических характеристик усилителœей отно­сятся:

1.Резонансный коэффициент усиления напряжения .

На сверхвысоких частотах (СВЧ) чаще применяют понятие коэффициента усиления по мощнос­ти,где - активная составляющая входной проводимости усилителя; - активная составляющая проводимость нагрузки.

2.Частотная избирательность усилителя показывает относитель­ное уменьшение усиления при заданной расстройке.

Иногда избирательность характеризуют коэффициентом прямоугольности, к примеру, .

3.Коэффициент шума определяет шумовые свойства усилителя.

4.Искажения сигнала в усилителœе : амплитудно-частотные, фазо­вые, нелинœейные.

5.Устойчивость работы усилителя определяется его способностью сохранять в процессе эксплуатации основные характеристики (обычно К о и АЧХ), а также отсутствие склонности к самовозбуждению.

На рис.1-3 приведены основные схемы УРЧ, а на рис.4 схе­ма УПЧ с фильтром сосредоточения избирательности (ФСИ) в виде электромеханического фильтра.

Рис.1. УРЧ на полевом транзисторе

Рис.2. УРЧ на биполярном транзисторе

Рис.3. УРЧ с индуктивной связью с избирательной системой

Рис.4. УПЧ с фильтром сосредоточенной избирательности

В усилителях радиочастоты и промежуточной частоты, в основном применяют два варианта включения усилительного прибора: с общим эмиттером (общим истоком) и каскодную схему включения транзисторов.

На рис.1 приведена схема усилителя на полевом транзисторе с общим истоком. В цепь стока включен колебательный контур L К С К. Контур настраивается конденсатором С К (может применяться для нас­тройки контура варикап или варикапная матрица).

В усилителœе применено последовательное питание стока через фильтр R3C3 . Напряжение смещения на затворе VT1 определяется падением напряжения от тока истока на резисторе R2 . Резистор R1 является сопротивлением утечки транзистора VT1 и служит для передачи напряжения смещения на затвор транзистора.

На рис. 2 приведена аналогичная схема УРЧ на биполярном тран­зисторе. Здесь применено двойное неполное включение контура с транзисторами VT1, VT2,что позволяет обеспечить крайне важно е шунти­рование контура со стороны выхода транзистора VT1и со стороны вхо­да транзистора VT2. Напряжение питания на коллектор транзистора подано через фильтр R4C4 ичасть витков катушки контура L К. Режим по постоянному току и температурная стабилизация обеспечивается с помощью резисторов R1,R2 и R3. Емкость С2 устраняет отрицательную обратную связь по переменному току.

На рис. 3 показана схема с трансформаторной связью контура с коллектором транзистора и автотрансформаторной связью со входом следующего каскада. Обычно, в данном случае, применяют, "удлинœенную" настройку контура (см. лаб. работу №1).

На рис. 4 представлена схема каскада УПЧ с ФСИ, выполненного на микросхеме 265 УВЗ. Микросхема представляет собой каскодный усилитель ОЭ - ОБ.

Усилители промежуточной частоты обеспечивают основное усиление и селœективность приемника по сосœеднему каналу. Их важной особенностью является то, что они работают на фиксированной промежуточ­ной частоте и имеют большое усиление, порядка.

При использовании различных типов ФСИ, требуемое усиление УПЧ достигается применением широкополосных каскадов.

Общим для всœех схем является двойное неполное включение из­бирательной системы. (Полное включение можно рассматривать как частный случай, когда коэффициенты трансформации m и n равны единице). По этой причине для анализа можно использовать одну обобщенную эквивален­тную схему замещения усилителя (см. рис.5).

Рис.5. Обобщенная эквивалентная схема резонансного усилителя

На схеме транзистор со стороны выхода заменен эквивалентным генератором тока с параметрами, и током, а со стороны входа следующего каскада прово­димостью, . Резистор утечки R4 (рис.1) или делитель (рис.2) заменены проводимостью (или).

Обычно сумму проводимостей считают проводимостью нагрузки , ᴛ.ᴇ.

Анализ эквивалентной схемы позволяет получить всœе расчетные соотношения для определœения характеристик каскада .

Так, комплексный коэффициент усиления каскада определяется выражением

эквивалентная резонансная проводимость контура;

Обобщенная расстройка контура.

Из данного соотношения легко определить модуль коэффициента

усиления

и резонансный коэффициент усиления каскада УРЧ

Резонансный коэффициент усиления достигает своего максималь­ного значения при одинаковом шунтировании контура со стороны выхо­да активного прибора и со стороны нагрузки (входа следующего каскада), ᴛ.ᴇ. когда

Приведенные соотношения позволяют получить уравнение резонан­сной кривой усилителя. Так, при малых расстройках, . Откуда, полоса пропускания УРЧ поуровню 0,707 (- 3дБ) равна

Резонансный коэффициент усиления одноконтурного каскада УПЧ такой же, как и у одноконтурного УРЧ

Для УПЧ с двухконтурным полосовым фильтром резонансный коэф­фициент усиления каскада определяется выражением

где - фактор связи между контурами, а - коэффициент связи между контурами.

Коэффициент усиления (по напряжению) УПЧ с любым ФСИ при сог­ласовании фильтра на входе и выходе должна быть рассчитан по формуле

Здесь, - характеристические (волновые) сопротивления ФСИ по входу и выходу соответственно;

Коэффициент передачи фильтра в полосœе прозрачности (пропускания).

В том случае, в случае если известно затухание фильтра в полосœе проз­рачности вдецибелах, то

Коэффициенты включения m и n вычисляются из условия согласо­вания фильтра на входе и выходе

Резонансная характеристика каскада УПЧ с ФСИ полностью опреде­ляется кривой изменения коэффициента передачи ФСИ от частоты. Отдельные точки резонансной кривой ФСИ задаются в справочниках.

Коэффициент усиления избирательного усилителя не должен превышать величины коэффициента устойчивого усиления. В общем случае, можно оценить из выражения

В случае если в качестве усилительного элемента используется каскодная схема, то крайне важно подставить соответствующие значения проводимостей для каскодной схемы к примеру, для схемы ОЭ – ОБ

В случае использования полевых транзисторов активной составляющей проводимости можно пренебречь и

УСИЛИТЕЛИ РАДИОЧАСТОТЫ И ПРОМЕЖУТОЧНОЙ ЧАСТОТЫ РАДИОПРИЕМНОГО УСТРОЙСТВА - понятие и виды. Классификация и особенности категории "УСИЛИТЕЛИ РАДИОЧАСТОТЫ И ПРОМЕЖУТОЧНОЙ ЧАСТОТЫ РАДИОПРИЕМНОГО УСТРОЙСТВА" 2017, 2018.

Усилители высоких частот (УВЧ) применяются для увеличения чувствительности радиоприемных средств - радиоприемников, телевизоров, радиопередатчиков. Помещенные между приемной антенной и входом радио или телеприемника, подобные схемы УВЧ увеличивают сигнал, поступающий от антенны (антенные усилители).

Использование таких усилителей позволяет увеличить радиус уверенного радиоприема, в случае радиостанций (приемо-передающих устройств -приемопередатчиков) либо увеличить дальность работы, либо при сохранении той же дальности уменьшить мощность излучения радиопередатчика.

На рис.1 приведены примеры схем УВЧ, часто используемых для увеличения чувствительности радиосредств. Значения используемых элементов зависят от конкретных условий: от частот (нижней и верхней) радиодиапазона, от антенны, от параметров последующего каскада, от напряжения питания и т.д.

На рис.1 (а) приведена схема широкополосного УВЧ по схеме с общим эмиттером (ОЭ). В зависимости от используемого транзистора данная схема может успешно применяться до частот в сотни мегагерц.

Необходимо напомнить, что в справочных данных на транзисторы приводятся предельные частотные параметры. Известно, что при оценке частотных возможностей транзистора для генератора, достаточно ориентироваться на предельное значение рабочей частоты, которое должно быть, как минимум, в два-три раза ниже предельной частоты, указанной в паспорте. Однако для ВЧ-усилителя, включенного по схеме ОЭ, предельную паспортную частоту уже необходимо уменьшать, как минимум, на порядок и более.

Рис.1. Примеры схем простых усилителей высокой частоты (УВЧ) на транзисторах.

Радиоэлементы для схемы на рис.1 (а):

  • R1=51к(для кремниевых транзисторов), R2=470, R3=100, R4=30-100;
  • С1=10-20, С2= 10-50, С3= 10-20, С4=500-Зн;

Значения конденсаторов приведены для частот УКВ-диапазона. Конденсаторы типа КЛС, КМ, КД и т.д.

Транзисторные каскады, как известно, включенные по схеме с общим эмиттером (ОЭ), обеспечивают сравнительно высокое усиление, но их частотные свойства относительно невысоки.

Транзисторные каскады, включенные по схеме с общей базой (ОБ), обладают меньшим усилением, чем транзисторные схемы с ОЭ, но их частотные свойства лучше. Это позволяет использовать те же транзисторы, что и в схемах с ОЭ, но на более высоких частотах.

На рис.1 (б) приведена схема широкополосного усилителя высокой частоты (УВЧ) на одном транзисторе, включенном по схеме с общей базой . В коллекторной цепи (нагрузка) включен LС-контур. В зависимости от используемого транзистора данная схема может успешно применяться до частот в сотни мегагерц.

Радиоэлементы для схемы на рис.1 (б):

  • R1=1к, R2=10к. R3=15к, R4=51 (для напряжения питания ЗВ-5В). R4=500-3 к (для напряжения питания 6В-15В);
  • С1=10-20, С2= 10-20, С3=1н, С4=1н-3н;
  • Т1 - кремниевые или германиевые ВЧ-транзисторы, например. КТ315. КТ3102, КТ368, КТ325, ГТ311 и т.д.

Значения конденсаторов и контура приведены для частот УКВ-диапазона. Конденсаторы типа КЛС, КМ, КД и т.д.

Катушка L1 содержит 6-8 витков провода ПЭВ 0.51, латунные сердечники длиной 8 мм с резьбой М3, отвод от 1/3 части витков.

На рис.1 (в) приведена еще одна схема широкополосного УВЧ на одном транзисторе , включенном по схеме с общей базой . В коллекторной цепи включен ВЧ-дроссель. В зависимости от используемого транзистора данная схема может успешно применяться до частот в сотни мегагерц.

Радиоэлементы:

  • R1=1к, R2=33к, R3=20к, R4=2к (для напряжения питания 6В);
  • С1=1н, С2=1н, С3=10н, С4=10н-33н;
  • Т1 - кремниевые или германиевые ВЧ-транзисторы, например, КТ315, КТ3102, КТ368, КТ325, ГТ311 и т.д.

Значения конденсаторов и контура приведены для частот СВ-, КВ-диапазона. Для более высоких частот, например, для УКВ-диапазона, значения емкостей должны быть уменьшены. В этом случае могут быть использованы дроссели Д01.

Конденсаторы типа КЛС, КМ, КД и т.д.

Катушки L1 - дроссели, для СВ-диапазона это могут быть катушки на кольцах 600НН-8-К7х4х2, 300 витков провода ПЭЛ 0,1.

Большее значение коэффициента усиления может быть получено за счет применения многотранзисторных схем . Это могут быть различные схемы, например, выполненные на основе каскодного усилителя ОК-ОБ на транзисторах разной структуры с последовательным питанием. Один из вариантов такой схемы УВЧ приведен на рис.1 (г).

Данная схема УВЧ обладает значительным усилением (десятки и даже сотни раз), однако каскодные усилители не могут обеспечить значительное усиление на высоких частотах. Такие схемы, как правило, применяются на частотах ДВ- и СВ-диапазона. Однако при использовании транзисторов сверхвысокой частоты и тщательном исполнении такие схемы могут успешно применяться до частот в десятки мегагерц.

Радиоэлементы:

  • R1=33к, R2=33к, R3=39к, R4=1к, R5=91, R6=2,2к;
  • С1=10н, С2=100, С3=10н, С4=10н-33н. С5=10н;
  • Т1 -ГТ311, КТ315, КТ3102, КТ368, КТ325 и т.д.
  • Т2 -ГТ313, КТ361, КТ3107 и т.д.

Значения конденсаторов и контура приведены для частот СВ-диапазона. Для более высоких частот, например, для КВ-диапазона, значения емкостей и инду ктивность контура (число витков) должны быть соответствующим образом уменьшены.

Конденсаторы типа КЛС, КМ, КД и т.д. Катушка L1 - для СВ-диапазона содержит 150 витков провода ПЭЛШО 0.1 на каркасах 7 мм, подстроечники М600НН-3-СС2,8х12.

При настройке схемы на рис.1 (г) необходимо подобрать резисторы R1, R3 так, чтобы напряжения между эмиттерами и коллекторами транзисторов стали одинаковыми и составили 3В при напряжении питания схемы 9 В.

Использование транзисторных УВЧ позволяет усиливать радиосигналы. поступающие от антенн, в теледиапазонах - метровые и дециметровые волны . При этом наиболее часто применяются схемы антенных усилителей, построенные на основе схемы 1(а).

Пример схемы антенного усилителя для диапазона частот 150-210 МГц приведена на рис.2 (а).

Рис.2.2. Схема антенного усилителя МВ-диапазона.

Радиоэлементы:

  • R1=47к, R2=470, R3= 110, R4=47к, R5=470, R6= 110. R7=47к, R8=470, R9=110, R10=75;
  • С1=15, С2= 1н, С3=15, С4=22, С5=15, С6=22, С7=15, С8=22;
  • Т1,Т2,ТЗ - 1Т311(Д,Л), ГТ311Д, ГТ341 или аналогичные.

Конденсаторы типа КМ, КД и т.д. Полосу частот данного антенного усилителя можно расширить в области низких частот соответствующим увеличением емкостей, входящих в состав схемы.

Радиоэлементы для варианта антенного усилителя для диапазона 50-210 МГц :

  • R1=47к, R2=470, R3= 110, R4=47к, R5=470, R6= 110. R7=47к, R8=470. R9=110, R10=75;
  • С 1=47, С2= 1н, С3=47, С4=68, С5=47, С6=68, С7=47, С8=68;
  • Т1,Т2,ТЗ - ГТ311А, ГТ341 или аналогичные.

Конденсаторы типа КМ, КД и т.д. При повторении данного устройства необходимо соблюдать все требования. предъявляемые к монтажу ВЧ-конструкций: минимальные длины соединяющих проводников, экранирование и т.д.

Антенный усилитель, предназначенный для использования в диапазонах телевизионных сигналов (и более высоких частот) может перегружаться сигналами мощных СВ-, КВ-, УКВ-радиостанций. Поэтому широкая полоса частот может быть неоптимальной, т.к. это может мешать нормальной работе усилителя. Особенно это сказывается в нижней области рабочего диапазона усилителя.

Для схемы приведенного антенного усилителя это может быть существенно, т.к. крутизна спада усиления в нижней части диапазона сравнительно низка.

Повысить крутизну амплитудно-частотной характеристики (АЧХ) данного антенного усилителя можно применением фильтра верхних частот 3-го порядка . Для этого на входе указанного усилителя можно применить дополнительную LС-цепь.

Схема подключения дополнительного LС-фильтра верхних частот к антенному усилителю приведена на рис. 2 (б).

Параметры дополнительного фильтра (ориентировочные):

  • С=5-10;
  • L - 3-5 витков ПЭВ-2 0,6. диаметр намотки 4 мм.

Настройку полосы частот и формы АЧХ целесообразно проводить с помощью соответствующих измерительных приборов (генератор качающейся частоты и т.д). Форму АЧХ можно регулировать изменением величин емкостей С, С1, изменением шага между витками L1 и числа витков.

Используя описанные схемотехнические решения и современные высокочастотные транзисторы (сверхвысокочастотные транзисторы - СВЧ-транзисторы) можно построить антенный усилитель ДМВ-диапазона Этот усилитель можно использовать как с У КВ-радиоприемником, например, входящим в состав УКВ-радиостанции, или совместно с телевизором.

На рис.3 приведена схема антенного усилителя ДМВ-диапазона .

Рис.3. Схема антенного усилителя ДМВ-диапазона и схема подключения.

Основные параметры усилителя ДМВ диапазона:

  • Полоса частот 470-790 МГц,
  • Усиление - 30 дБ,
  • Коэффициент шума -3 дБ,
  • Входное и выходное сопротивления - 75 Ом,
  • Ток потребления - 12 мА.

Одной из особенностей данной схемы является подача напряжения питания на схему антенного усилителя по выходному кабелю, по которому осуществляется подача выходного сигнала от антенного усилителя к приемнику радиосигнала - УКВ-радиоприемника, например, приемника УКВ-радиостанции или телевизора.

Антенный усилитель представляет собой два транзисторных каскада, включенных по схеме с общим эмиттером. На входе антенного усилителя предусмотрен фильтр верхних частот 3-го порядка, ограничивающий диапазон рабочих частот снизу. Это увеличивает помехозащищенность антенного усилителя.

Радиоэлементы:

  • R1 = 150к, R2=1 к, R3=75к, R4=680;
  • С1=3.3, С10=10, С3=100, С4=6800, С5=100;
  • Т1,Т2 - КТ3101А-2, КТ3115А-2, КТ3132А-2.
  • Конденсаторы С1,С2 типа КД-1, остальные - КМ-5 или К10-17в.
  • L1 - ПЭВ-2 0,8 мм, 2,5 витка, диаметр намотки 4 мм.
  • L2 - ВЧ-дроссель, 25 мкГн.

На рис.3 (б) приведена схема подключения антенного усилителя к антенному гнезду ТВ-приемника (к селектору ДМВ-диапазона) и к дистанционному источнику питания 12 В. При этом, как видно из схемы, питание на схему подается через коаксиальный кабель, используемый и для передачи усиленного ДМВ-радиосигнала от антенного усилителя к приемнику - УКВ-радиоприемнику или к телевизору.

Радиоэлементы подключения, рис.3 (б):

  • С5=100;
  • L3 - ВЧ-дроссель, 100 мкГн.

Монтаж выполнен на двустороннем стеклотекстолите СФ-2 навесным способом, длина проводников и площадь контактных площадок - минимальные, необходимо предусмотреть тщательное экранирование устройства.

Налаживание усилителя сводится к установке токов коллекторов транзисторов и регулируются при помощи R1 и RЗ, Т1 - 3.5 мА, Т2 - 8 мА; форму АЧХ можно регулировать подбором С2 в пределах 3-10 пФ и изменением шага между витками L1.

Литература: Рудомедов Е.А., Рудометов В.Е - Электроника и шпионские страсти-3.

Так как усилитель радиочастоты находится на входе радиоприемного устройства, то его шумовые характеристики и в основном определяют характеристики всего устройства в целом. Именно коэффициент шума усилителя радиочастоты определяет . Нелинейные свойства усилителя оцениваются характеристиками IP2 и IP3. Для обеспечения высокой линейности во всех каскадах приемника используются . Очень важным параметром является точка .

В связи с микроминиатюризацией современной элементной базой и связанной с ней миниатюризацией узлов радиоприемного устройства сейчас на СВЧ возможно применение схемотехнических решений, которые ранее применялись на значительно более низких частотах. Это связано с тем, что размеры блока относительно длины волны рабочего колебания становятся меньше одной десятой длины волны и в результате при разработке этого блока можно пренебречь волновыми эффектами при распространении колебаний.

Дополнительное повышение устойчивости схемы достигается включением фильтров нижней частоты на входе и выходе транзисторного каскада. Эти фильтры расчитываются на всю полосу частот, в которой транзистор сохраняет усилительные свойства. В результате во всем диапазоне частот не выполняется баланс фаз и самовозбуждение становится невозможным. Этот же фильтр осуществляет преобразование входного и выходного сопротивления транзистора к стандартному сопротивлению 50 Ом. Входная и выходная емкость включается в состав фильтра. усилителя радиочастоты с согласующими цепями на входе и выходе приведена на рисунке 1.


Рисунок 1. Принципиальная схема усилителя радиочастоты с входным и выходным сопротивлением 50 Ом на транзисторе с общей базой

В данной схеме R1 … R3 реализуют по постоянному току. Конденсатор C2 обеспечивает заземление базы транзистора по высокой частоте, а конденсатор C3 фильтрует цепи питания от помех. Дроссель L2 является нагрузкой коллектора транзистора VT1. Он пропускает ток питания в цепь коллектора VT1, но при этом развязывает источник питания по переменному току радиочастоты. Фильтры низкой частоты L1, C1 и C4, L3 обеспечивают трансформацию входного и выходного сопротивления транзистора в 50 Ом. Примененная схема фильтра низкой частоты позволяет включить в его состав входную или выходную емкость транзистора. Входная емкость транзистора VT1 совместно с емкостью C1 образует входной фильтр усилителя, а выходная емкость этого же транзистора совместно с емкостью C4 образует выходной фильтр низкой частоты.

Еще одной распространенной схемой усилителей радиочастоты является схема каскодного усилителя. В этой схеме последовательно соединяются два — и с общей базой. Подобное решение позволяет дополнительно уменьшить значение проходной емкости усилителя. Наиболее распространенной схемой каскодного усилителя является схема с гальванической связью между транзисторными каскадами. Пример схемы каскодного усилителя радиочастоты, собранной на биполярных транзисторах, приведен на рисунке 2.



Рисунок 2. Принципиальная схема каскодного усилителя радиочастоты

В данной схеме, точно так же как и в схеме, приведенной на рисунке 1, применена схема эмиттерной стабилизации рабочей точки транзистора VT2. Конденсатор C6 обеспечивает устранение отрицательной обратной связи на частоте принимаемого сигнала. В ряде случаев этот конденсатор не ставится для увеличения линейности усилителя и для того, чтобы уменьшить коэффициент усиления усилителя радиочастот.

Конденсатор C2 обеспечивает заземление базы транзистора VT1 по переменному току. Конденсатор C4 осуществляет фильтрацию источника питания по переменному току. Резисторы R1, R2, R3 определяют рабочие точки транзисторов VT1 и VT2. Конденсатор C3 развязывает базовую цепь транзистора VT2 по постоянному току от предыдущего каскада (входного полосового фильтра). Нагрузкой цепи коллектора по переменному току служит дроссель L2. Как и в схеме усилителя радиочастоты с общей базой на входе и выходе каскодного усилителя применены фильтры низкой частоты. Основное их назначение — обеспечить трансформацию входного и выходного сопротивления в значение 50 Ом.

Обратите внимание, что для подведения входного напряжения и напряжения питания, а также снятия выходного усиленного напряжения достаточно трех выводов схемы. Это позволяет выполнить усилитель в виде микросхемы буквально с тремя выводами. Такие корпуса обладают минимальными габаритами, а это позволяет избежать волновых эффектов даже на достаточно высоких частотах рабочего сигнала.

В настоящее время схемы усилителей радиочастоты выпускаются рядом фирм в виде готовых микросхем. Для примера можно назвать такие микросхемы как RF3827, RF2360 фирмы RFMD, ADL5521 фирмы Analog Devises, MAALSS0038, AM50-0015 фирмы M/A-COM. В данных микросхемах применяются арсенид-галлиевые полевые транзисторы. Верхняя усиливаемая частота может достигать значения 3ГГц. При этом коэффициент шума колеблется в пределах от 1,2 до 1,5 дБ. Пример принципиальной схемы усилителя радиочастоты с применением интегральной микросхемы MAALSS0038 фирмы M/A-COM приведен на рисунке 3.



Рисунок 3. Принципиальная схема усилителя радиочастоты с применением интегральной микросхемы MAALSS0038

Радиочастотные сигналы в диапазоне от сотен мегагерц до единиц гигагеры можно усиливать только при условии очень малых габаритов микросхем и тщательной проработки конструкции печатной платы. Именно поэтому все фирмы производители усилителей радиочастот приводят примеры печатных плат. Пример конструкции печатной платы усилителя радиочастоты, собранной на микросхеме MAALSS0038 фирмы M/A-COM, приведен на рисунке 4.



Рисунок 4. Конструкция печатной платы усилителя радиочастоты

Следует отметить, что часто между выходом усилителя радиочастоты и входом преобразователя частоты часто ставят фильтр, подобный входному фильтру, как это показано на рисунке 2 . Он позволяет увеличить подавление побочных каналов, образующихся в преобразователе частоты. Так как входное сопротивление фильтра и выходное сопротивление усилителя радиочастоты равны 50 Ом, то их сопряжение обычно не вызывает проблем.

Литература:

Вместе со статьей "Усилители радиочастоты" читают:

При одновременной работе приемника и передатчика возникают вопросы электромагнитной совместимости этих узлов...
http://сайт/WLL/Duplexer.php

При проектировании радиоприемных устройств базовых станций возникает требование распределять энергию сигнала с антенны на входы нескольких радиоприемников.
http://сайт/WLL/divider.php

Входной фильтр является одним из важнейших узлов радиоприемника...
Чем более сложный фильтр будет применен в качестве входного фильтра, тем выше удастся получить качество радиоприемника...
http://сайт/WLL/InFiltr/

Усиление принимаемых радиосигналов в приемном устройстве осу­ществляется в его преселекторе, т.е. на радиочастоте, и после преоб­разователя частоты - на промежуточной частоте. Соответственно раз­личают усилители радиочастоты (УРЧ) и усилители промежуточной час­тоты (УПЧ). В этих усилителях, вместе с усилением должна обеспечивать­ся частотная избирательность приемника. Для этого усилители содер­жат резонансные цепи: одиночные колебательные контуры, фильтры на связанных контурах, различные типы фильтров сосредоточенной избирательности. Усилители радиочастоты с переменной настройкой обыч­но выполняют с избирательной системой, аналогичной примененной во входной цепи приемника, чаще всего это одноконтурные избирательные цепи.

В усилителях промежуточной частоты находят применение сложные типы избирательных систем, обладающие АЧХ близкими к прямоугольным, такие, как электромеханические фильтры (ЭМФ), кварцевые фильтры (КФ), фильтры на поверхностных (объемных) акустических волнах (ПАВ, ПОВ) и др.

В большинстве современных приемников используют однокаскадные УРЧ. Реже, при высоких требованиях к избирательности и коэф­фициенту шума, УРЧ могут содержать до трех каскадов.

К числу основных электрических характеристик усилителей отно­сятся:

1.Резонансный коэффициент усиления напряжения .

На сверхвысоких частотах (СВЧ) чаще применяют понятие коэффициента усиления по мощнос­ти
, где
- активная составляющая входной проводимости усилителя;
- активная составляющая проводимость нагрузки.

2.Частотная избирательность усилителя показывает относитель­ное уменьшение усиления при заданной расстройке
.

Иногда избирательность характеризуют коэффициентом прямоугольности, например,
.

3.Коэффициент шума определяет шумовые свойства усилителя.

4.Искажения сигнала в усилителе : амплитудно-частотные, фазо­вые, нелинейные.

5.Устойчивость работы усилителя определяется его способностью сохранять в процессе эксплуатации основные характеристики (обычно К о и АЧХ), а также отсутствие склонности к самовозбуждению.

На рис.1-3 приведены основные схемы УРЧ, а на рис.4 схе­ма УПЧ с фильтром сосредоточения избирательности (ФСИ) в виде электромеханического фильтра.

Рис.1. УРЧ на полевом транзисторе

Рис.2. УРЧ на биполярном транзисторе

Рис.3. УРЧ с индуктивной связью с избирательной системой

Рис.4. УПЧ с фильтром сосредоточенной избирательности

В усилителях радиочастоты и промежуточной частоты, в основном применяют два варианта включения усилительного прибора: с общим эмиттером (общим истоком) и каскодную схему включения транзисторов.

На рис.1 приведена схема усилителя на полевом транзисторе с общим истоком. В цепь стока включен колебательный контур L К С К . Контур настраивается конденсатором С К (может применяться для нас­тройки контура варикап или варикапная матрица).

В усилителе применено последовательное питание стока через фильтр R 3 C 3 . Напряжение смещения на затворе VT 1 определяется падением напряжения от тока истока на резисторе R 2 . Резистор R 1 является сопротивлением утечки транзистора VT 1 и служит для передачи напряжения смещения на затвор транзистора.

На рис. 2 приведена аналогичная схема УРЧ на биполярном тран­зисторе. Здесь применено двойное неполное включение контура с транзисторами VT1, VT2, что позволяет обеспечить необходимое шунти­рование контура со стороны выхода транзистора VT1 и со стороны вхо­да транзистора VT2. Напряжение питания на коллектор транзистора подано через фильтр R4C4 и часть витков катушки контура L К . Режим по постоянному току и температурная стабилизация обеспечивается с помощью резисторов R1,R2 и R3. Емкость С2 устраняет отрицательную обратную связь по переменному току.

На рис. 3 показана схема с трансформаторной связью контура с коллектором транзистора и автотрансформаторной связью со входом следующего каскада. Обычно, в этом случае, применяют, "удлиненную" настройку контура (см. лаб. работу №1).

На рис. 4 представлена схема каскада УПЧ с ФСИ, выполненного на микросхеме 265 УВЗ. Микросхема представляет собой каскодный усилитель ОЭ - ОБ.

Усилители промежуточной частоты обеспечивают основное усиление и селективность приемника по соседнему каналу. Их важной особенностью является то, что они работают на фиксированной промежуточ­ной частоте и имеют большое усиление, порядка
.

При использовании различных типов ФСИ, требуемое усиление УПЧ достигается применением широкополосных каскадов.

Общим для всех схем является двойное неполное включение из­бирательной системы. (Полное включение можно рассматривать как частный случай, когда коэффициенты трансформации m и n равны единице). Поэтому для анализа можно использовать одну обобщенную эквивален­тную схему замещения усилителя (см. рис.5).

Рис.5. Обобщенная эквивалентная схема резонансного усилителя

На схеме транзистор со стороны выхода заменен эквивалентным генератором тока с параметрами
,
и током
, а со стороны входа следующего каскада прово­димостью
,
. Резистор утечкиR4 (рис.1) или делитель
(рис.2) заменены проводимостью
(
или
).

Обычно сумму проводимостей
считают проводимостью нагрузкиG Н , т.е.

Анализ эквивалентной схемы позволяет получить все расчетные соотношения для определения характеристик каскада .

Так, комплексный коэффициент усиления каскада определяется выражением

, где -

эквивалентная резонансная проводимость контура;

Обобщенная расстройка контура.

Из данного соотношения легко определить модуль коэффициента

усиления

и резонансный коэффициент усиления каскада УРЧ

Резонансный коэффициент усиления достигает своего максималь­ного значения при одинаковом шунтировании контура со стороны выхо­да активного прибора и со стороны нагрузки (входа следующего каскада), т.е. когда

Приведенные соотношения позволяют получить уравнение резонан­сной кривой усилителя. Так, при малых расстройках,
. Откуда, полоса пропускания УРЧ по уровню 0,707 (- 3дБ) равна

Резонансный коэффициент усиления одноконтурного каскада УПЧ такой же, как и у одноконтурного УРЧ

Для УПЧ с двухконтурным полосовым фильтром резонансный коэф­фициент усиления каскада определяется выражением

где
- фактор связи между контурами, а - коэффициент связи между контурами.

Коэффициент усиления (по напряжению) УПЧ с любым ФСИ при сог­ласовании фильтра на входе и выходе может быть рассчитан по формуле

Здесь
,
- характеристические (волновые) сопротивления ФСИ по входу и выходу соответственно;

- коэффициент передачи фильтра в полосе прозрачности (пропускания).

В том случае, если известно затухание фильтра в полосе проз­рачности в децибелах, то

Коэффициенты включения m и n вычисляются из условия согласо­вания фильтра на входе и выходе

,
.

Резонансная характеристика каскада УПЧ с ФСИ полностью опреде­ляется кривой изменения коэффициента передачи ФСИ от частоты. Отдельные точки резонансной кривой ФСИ задаются в справочниках.

Коэффициент усиления избирательного усилителя не должен превышать величины коэффициента устойчивого усиления
. В общем случае,
можно оценить из выражения

Если в качестве усилительного элемента используется каскодная схема, то необходимо подставить соответствующие значения проводимостей для каскодной схемы например, для схемы ОЭ – ОБ

В случае использования полевых транзисторов активной составляющей проводимости можно пренебречь и

.

Усилители высоких частот (УВЧ) применяются для увеличения чувствительности радиоприемных средств - радиоприемников, телевизоров, радиопередатчиков. Помещенные между приемной антенной и входом радио или телеприемника, подобные схемы УВЧ увеличивают сигнал, поступающий от антенны (антенные усилители).

Использование таких усилителей позволяет увеличить радиус уверенного радиоприема, в случае радиостанций (приемо-передающих устройств -приемопередатчиков) либо увеличить дальность работы, либо при сохранении той же дальности уменьшить мощность излучения радиопередатчика.

На рис.1 приведены примеры схем УВЧ, часто используемых для увеличения чувствительности радиосредств. Значения используемых элементов зависят от конкретных условий: от частот (нижней и верхней) радиодиапазона, от антенны, от параметров последующего каскада, от напряжения питания и т.д.

На рис.1 (а) приведена схема широкополосного УВЧ по схеме с общим эмиттером (ОЭ). В зависимости от используемого транзистора данная схема может успешно применяться до частот в сотни мегагерц.

Необходимо напомнить, что в справочных данных на транзисторы приводятся предельные частотные параметры. Известно, что при оценке частотных возможностей транзистора для генератора, достаточно ориентироваться на предельное значение рабочей частоты, которое должно быть, как минимум, в два-три раза ниже предельной частоты, указанной в паспорте. Однако для ВЧ-усилителя, включенного по схеме ОЭ, предельную паспортную частоту уже необходимо уменьшать, как минимум, на порядок и более.

Рис.1. Примеры схем простых усилителей высокой частоты (УВЧ) на транзисторах.

Радиоэлементы для схемы на рис.1 (а):

  • R1=51к(для кремниевых транзисторов), R2=470, R3=100, R4=30-100;
  • С1=10-20, С2= 10-50, С3= 10-20, С4=500-Зн;

Значения конденсаторов приведены для частот УКВ-диапазона. Конденсаторы типа КЛС, КМ, КД и т.д.

Транзисторные каскады, как известно, включенные по схеме с общим эмиттером (ОЭ), обеспечивают сравнительно высокое усиление, но их частотные свойства относительно невысоки.

Транзисторные каскады, включенные по схеме с общей базой (ОБ), обладают меньшим усилением, чем транзисторные схемы с ОЭ, но их частотные свойства лучше. Это позволяет использовать те же транзисторы, что и в схемах с ОЭ, но на более высоких частотах.

На рис.1 (б) приведена схема широкополосного усилителя высокой частоты (УВЧ) на одном транзисторе, включенном по схеме с общей базой . В коллекторной цепи (нагрузка) включен LС-контур. В зависимости от используемого транзистора данная схема может успешно применяться до частот в сотни мегагерц.

Радиоэлементы для схемы на рис.1 (б):

  • R1=1к, R2=10к. R3=15к, R4=51 (для напряжения питания ЗВ-5В). R4=500-3 к (для напряжения питания 6В-15В);
  • С1=10-20, С2= 10-20, С3=1н, С4=1н-3н;
  • Т1 - кремниевые или германиевые ВЧ-транзисторы, например. КТ315. КТ3102, КТ368, КТ325, ГТ311 и т.д.

Значения конденсаторов и контура приведены для частот УКВ-диапазона. Конденсаторы типа КЛС, КМ, КД и т.д.

Катушка L1 содержит 6-8 витков провода ПЭВ 0.51, латунные сердечники длиной 8 мм с резьбой М3, отвод от 1/3 части витков.

На рис.1 (в) приведена еще одна схема широкополосного УВЧ на одном транзисторе , включенном по схеме с общей базой . В коллекторной цепи включен ВЧ-дроссель. В зависимости от используемого транзистора данная схема может успешно применяться до частот в сотни мегагерц.

Радиоэлементы:

  • R1=1к, R2=33к, R3=20к, R4=2к (для напряжения питания 6В);
  • С1=1н, С2=1н, С3=10н, С4=10н-33н;
  • Т1 - кремниевые или германиевые ВЧ-транзисторы, например, КТ315, КТ3102, КТ368, КТ325, ГТ311 и т.д.

Значения конденсаторов и контура приведены для частот СВ-, КВ-диапазона. Для более высоких частот, например, для УКВ-диапазона, значения емкостей должны быть уменьшены. В этом случае могут быть использованы дроссели Д01.

Конденсаторы типа КЛС, КМ, КД и т.д.

Катушки L1 - дроссели, для СВ-диапазона это могут быть катушки на кольцах 600НН-8-К7х4х2, 300 витков провода ПЭЛ 0,1.

Большее значение коэффициента усиления может быть получено за счет применения многотранзисторных схем . Это могут быть различные схемы, например, выполненные на основе каскодного усилителя ОК-ОБ на транзисторах разной структуры с последовательным питанием. Один из вариантов такой схемы УВЧ приведен на рис.1 (г).

Данная схема УВЧ обладает значительным усилением (десятки и даже сотни раз), однако каскодные усилители не могут обеспечить значительное усиление на высоких частотах. Такие схемы, как правило, применяются на частотах ДВ- и СВ-диапазона. Однако при использовании транзисторов сверхвысокой частоты и тщательном исполнении такие схемы могут успешно применяться до частот в десятки мегагерц.

Радиоэлементы:

  • R1=33к, R2=33к, R3=39к, R4=1к, R5=91, R6=2,2к;
  • С1=10н, С2=100, С3=10н, С4=10н-33н. С5=10н;
  • Т1 -ГТ311, КТ315, КТ3102, КТ368, КТ325 и т.д.
  • Т2 -ГТ313, КТ361, КТ3107 и т.д.

Значения конденсаторов и контура приведены для частот СВ-диапазона. Для более высоких частот, например, для КВ-диапазона, значения емкостей и инду ктивность контура (число витков) должны быть соответствующим образом уменьшены.

Конденсаторы типа КЛС, КМ, КД и т.д. Катушка L1 - для СВ-диапазона содержит 150 витков провода ПЭЛШО 0.1 на каркасах 7 мм, подстроечники М600НН-3-СС2,8х12.

При настройке схемы на рис.1 (г) необходимо подобрать резисторы R1, R3 так, чтобы напряжения между эмиттерами и коллекторами транзисторов стали одинаковыми и составили 3В при напряжении питания схемы 9 В.

Использование транзисторных УВЧ позволяет усиливать радиосигналы. поступающие от антенн, в теледиапазонах - метровые и дециметровые волны . При этом наиболее часто применяются схемы антенных усилителей, построенные на основе схемы 1(а).

Пример схемы антенного усилителя для диапазона частот 150-210 МГц приведена на рис.2 (а).

Рис.2.2. Схема антенного усилителя МВ-диапазона.

Радиоэлементы:

  • R1=47к, R2=470, R3= 110, R4=47к, R5=470, R6= 110. R7=47к, R8=470, R9=110, R10=75;
  • С1=15, С2= 1н, С3=15, С4=22, С5=15, С6=22, С7=15, С8=22;
  • Т1,Т2,ТЗ - 1Т311(Д,Л), ГТ311Д, ГТ341 или аналогичные.

Конденсаторы типа КМ, КД и т.д. Полосу частот данного антенного усилителя можно расширить в области низких частот соответствующим увеличением емкостей, входящих в состав схемы.

Радиоэлементы для варианта антенного усилителя для диапазона 50-210 МГц :

  • R1=47к, R2=470, R3= 110, R4=47к, R5=470, R6= 110. R7=47к, R8=470. R9=110, R10=75;
  • С 1=47, С2= 1н, С3=47, С4=68, С5=47, С6=68, С7=47, С8=68;
  • Т1,Т2,ТЗ - ГТ311А, ГТ341 или аналогичные.

Конденсаторы типа КМ, КД и т.д. При повторении данного устройства необходимо соблюдать все требования. предъявляемые к монтажу ВЧ-конструкций: минимальные длины соединяющих проводников, экранирование и т.д.

Антенный усилитель, предназначенный для использования в диапазонах телевизионных сигналов (и более высоких частот) может перегружаться сигналами мощных СВ-, КВ-, УКВ-радиостанций. Поэтому широкая полоса частот может быть неоптимальной, т.к. это может мешать нормальной работе усилителя. Особенно это сказывается в нижней области рабочего диапазона усилителя.

Для схемы приведенного антенного усилителя это может быть существенно, т.к. крутизна спада усиления в нижней части диапазона сравнительно низка.

Повысить крутизну амплитудно-частотной характеристики (АЧХ) данного антенного усилителя можно применением фильтра верхних частот 3-го порядка . Для этого на входе указанного усилителя можно применить дополнительную LС-цепь.

Схема подключения дополнительного LС-фильтра верхних частот к антенному усилителю приведена на рис. 2 (б).

Параметры дополнительного фильтра (ориентировочные):

  • С=5-10;
  • L - 3-5 витков ПЭВ-2 0,6. диаметр намотки 4 мм.

Настройку полосы частот и формы АЧХ целесообразно проводить с помощью соответствующих измерительных приборов (генератор качающейся частоты и т.д). Форму АЧХ можно регулировать изменением величин емкостей С, С1, изменением шага между витками L1 и числа витков.

Используя описанные схемотехнические решения и современные высокочастотные транзисторы (сверхвысокочастотные транзисторы - СВЧ-транзисторы) можно построить антенный усилитель ДМВ-диапазона Этот усилитель можно использовать как с У КВ-радиоприемником, например, входящим в состав УКВ-радиостанции, или совместно с телевизором.

На рис.3 приведена схема антенного усилителя ДМВ-диапазона .

Рис.3. Схема антенного усилителя ДМВ-диапазона и схема подключения.

Основные параметры усилителя ДМВ диапазона:

  • Полоса частот 470-790 МГц,
  • Усиление - 30 дБ,
  • Коэффициент шума -3 дБ,
  • Входное и выходное сопротивления - 75 Ом,
  • Ток потребления - 12 мА.

Одной из особенностей данной схемы является подача напряжения питания на схему антенного усилителя по выходному кабелю, по которому осуществляется подача выходного сигнала от антенного усилителя к приемнику радиосигнала - УКВ-радиоприемника, например, приемника УКВ-радиостанции или телевизора.

Антенный усилитель представляет собой два транзисторных каскада, включенных по схеме с общим эмиттером. На входе антенного усилителя предусмотрен фильтр верхних частот 3-го порядка, ограничивающий диапазон рабочих частот снизу. Это увеличивает помехозащищенность антенного усилителя.

Радиоэлементы:

  • R1 = 150к, R2=1 к, R3=75к, R4=680;
  • С1=3.3, С10=10, С3=100, С4=6800, С5=100;
  • Т1,Т2 - КТ3101А-2, КТ3115А-2, КТ3132А-2.
  • Конденсаторы С1,С2 типа КД-1, остальные - КМ-5 или К10-17в.
  • L1 - ПЭВ-2 0,8 мм, 2,5 витка, диаметр намотки 4 мм.
  • L2 - ВЧ-дроссель, 25 мкГн.

На рис.3 (б) приведена схема подключения антенного усилителя к антенному гнезду ТВ-приемника (к селектору ДМВ-диапазона) и к дистанционному источнику питания 12 В. При этом, как видно из схемы, питание на схему подается через коаксиальный кабель, используемый и для передачи усиленного ДМВ-радиосигнала от антенного усилителя к приемнику - УКВ-радиоприемнику или к телевизору.

Радиоэлементы подключения, рис.3 (б):

  • С5=100;
  • L3 - ВЧ-дроссель, 100 мкГн.

Монтаж выполнен на двустороннем стеклотекстолите СФ-2 навесным способом, длина проводников и площадь контактных площадок - минимальные, необходимо предусмотреть тщательное экранирование устройства.

Налаживание усилителя сводится к установке токов коллекторов транзисторов и регулируются при помощи R1 и RЗ, Т1 - 3.5 мА, Т2 - 8 мА; форму АЧХ можно регулировать подбором С2 в пределах 3-10 пФ и изменением шага между витками L1.

Литература: Рудомедов Е.А., Рудометов В.Е - Электроника и шпионские страсти-3.