Основные положения теории Н.А. Бернштейна

1896-1966) - выдающийся сов. психофизиолог. Концепция физиологии активности, созданная Б. на основе теоретического и эмпирического анализа естественных движений человека (спортивных, трудовых, после ранений и травм органов движения и др.) с использованием разработанных Б. новых методов их регистрации и обработки (циклография), послужила основой для глубокого понимания целевой детерминации человеческого поведения (см. Двигательная задача, Координация движении), механизмов формирования двигательных навыков, уровней построения движений в норме и их коррекции при патологии. В работах Б. получили свое обоснование решение психофизиологической проблемы в материалистическом духе с использованием последних достижений физиологической науки, а также отдельные идеи кибернетики. Концепция Б. нашла широкое практическое применение при восстановлении движений раненых во время Великой Отечественной войны и в последующий период, при формировании спортивных навыков, создании различных кибернетических устройств и др. См. также Двигателъный навык, Двигательный состав, Действие, Живое движение, Рефлекторное кольцо. (Е. Е. Соколова.)

БЕРНШТЕЙН Николай Александрович

Николай Александрович (1896-1966) - российский физиолог, чьи работы по регуляции движений оказали большое влияние на психологию. Сын известного психиатра, ученика С.С. Корсакова, А.Н. Бернштейна. После окончания в 1919 г. медицинского отделения Московского ун-та был мобилизован на Гражданскую войну и служил врачом на Восточном фронте (1919-1920). Вернувшись в Москву, начал заниматься в ЦИТ, организованном А.К. Гастевым, регистрацией движений человека и анализом их физических параметров - биомеханикой (Общая биомеханика, 1926). Метод биомеханики, разработанный немецким анатомом О. Фишером и французским физиологом Ж. Мареем, заключался в фотографировании движений человека с прикрепленными к сочленениям лампочками. В этих исследованиях обнаружилось, что двигательный аппарат человека, в отличие от механизма, обладает огромным количеством степеней свободы движения. В начале XX в. над проблемой двигательной координации работали физиологи Ч. Шеррингтон (принцип воронки, или общего пути для нервных импульсов) и А.А. Ухтомский (принцип доминанты). Б. выдвинул в качестве основы координации принцип сенсорных коррекций, согласно которому нервная система отслеживает и корректирует складывающуюся по ходу движения ситуацию на двигательной периферии или же предваряет ее, посылая опережающие сигналы (Клинические пути современной биомеханики // Сборник трудов Гос. института усовершенствования врачей в Казани, 1929). Анализируя циклограммы - графики зависимости прикладываемых мышечных усилий от времени, - Б. выделил три типа волн: первые, спонтанно-иннервационные, были обусловлены импульсами из ЦНС; вторые, механически-реактивные, имели чисто периферическое происхождение, отражая механические процессы в ске-летно-мышечном аппарате движущегося органа; третьи, названные реактивно-ин-нервационными, по предположению Б., свидетельствовали о взаимодействии центральных команд и периферических процессов. Циклическая связь центра и периферии была выражена Б. с помощью дифференциального уравнения второго порядка (Проблема взаимоотношений координации и локализации // Архив биологических наук. 1935. Т. 38. № 1). Научной идеологией Б. на этом этапе был целостный подход, общий для некоторых биологов (X. Дриш), физиологов (К. Гольдштейн) и психологов (гештальт-психология) начала века. Уже в первой работе по биомеханике рабочего удара он сравнил ударное движение с монолитом, который отзывается весь в целом на каждое изменение одной из частей. Он считал движение морфологическим объектом, который реагирует, развивается, инволюционирует подобно живому существу (Биодинамическая нормаль удара / Исследования Центрального института труда. 1924. Т. 1. Вып. 2). В 1930-е гг. Б. много работал в разных сферах практики: изучал движения пианистов, патологические походки, ходьбу и бег ребенка, движения спортсменов, рабочее место вагоновожатых трамвая. Подобно рабочему удару, который он анализировал в ЦИТе, каждое движение Б. считал целенаправленными, отвечающим определенной задаче. Он в корне преобразовал представление прежней физиологии о проекте или моторном образе движения: если проект движения - закодированный в НС его двигательный состав - представлен в телесных категориях, то двигательная задача формулируется в пространственных терминах, категориях внешнего мира. Внешний мир (от чистого пространства до предмета и символа) представлен в руководящих движением афферентных синтезах. Афферентные синтезы распределены по уровням построения движений. За книгу О построении движений (1947), в которой развивались эти представления о двигательной координации, Б. получил Государственную премию (1948). В начале 1950-х Б. вынужден был уйти из всех учреждений, в которых он работал, в результате нападок на него на Павловской сессии и во время кампании против космополитизма. Тем не менее в последний период своей жизни, когда Б. не имел доступа к экспериментальным исследованиям, он много общался с кибернетиками, биофизиками и разрабатывал идеи физиологии активности. Б. переформулировал положения своей теории построения движений на кибернетический язык и получил понятия, близкие к теории систем или концепции регуляции (обратные связи, сличение и т.п.). Но при этом Б., который вырос на холистской идеологии, подчеркивал отличие живых организмов от машин, отмечая, что в отличие от кибернетических систем, инициатива движения принадлежит организму. В движении особым образом содержится то, что должно наступить в результате этого движения - его цель; только живое способно предвидеть ситуацию и моделировать будущее. Интерес психологов к работам Б. имел несколько пиков. В 1925-1927 гг. Б. был сотрудником Психологического ин-та, которым тогда руководил К.Н. Корнилов. Реактологи надеялись сделать форму движения дискриминативным признаком для определения типа реакций и найти по циклограммам психологические характеристики движения. В годы ВОВ и сразу после ее окончания идеи Б. о построении движений были использованы в работах группы психологов под руководством А.В. Запорожца и А.Н. Леонтьева по восстановлению движений у получивших ранения людей. Ведущие российские психологи середины XX в. А.Н. Леонтьев, А.Р. Лурия и С.Л. Рубинштейн сошлись на том, что концепция Б. предоставляет широкие возможности для психологического исследования движений. Наконец, идеи Б. об управлении движениями оказались созвучными нарождавшимся инженерной и когнитивной психологии: в 1960-х гг. Л.М. Веккер, Б.М. Величков-ский, В. П. Зинченко и др. стали говорить о построении образа в терминах теории построения движений. Посмертно вышли, ставшие классическими, Очерки по физиологии движений и физиологии активности, переизданы в книге Физиология движений и активность, М., 1990 и О ловкости и ее развитии, М., 1990. И.Е. Сиротки на

когда персеверации проскальзывают и у нормальных субъектов без каких бы то ни было болез-
ненных предпосылок. В этих случаях возможны оба вида персеверации - и сензорные, или гиподи-
намические, и эффекторные, или гипердинамические.
Гиподинамические персеверативные проявления возможны прежде всего на фоне общего функцио-
нального ослабления нервной системы: при сильном утомлении, сонливости, интоксикации и т.п. При
нормальных состояниях организма сензорные персеверации (или застревания) могут появляться:
1) когда создается необходимость в быстром переключении на другую форму или другой темп
движения, 2) когда выполняемый двигательный процесс нов или слишком труден для субъекта,
3) когда что-либо интенсивно отвлекает или сбивает его. Приведем примеры. Речевые персевера-
ции очень свойственны детям, обучающимся говорить (папапа вместо папа, лампапа вместо
лампа, бакака вместо собака и т.п.) или только недавно овладевшим речью (ошибки вроде
гигипотам, папятник, какаратица; мама, момоги; папа, попоги мне и т.п.)1. У взрослых они вновь
проступают при значительных трудностях для выговаривания, требующих внезапных тонких пере-
ключений для лавирования среди похожих звучаний; ошибки именно персеверативного характера
появляются с наибольшей частотой в тех случаях (скороговорки), когда заданный текст сам пред-
ставляет собой почти персеверацию2. Вот лингвистические следы аналогичных персеверативных
ошибок, происшедших при заимствовании слова с чужого языка: тартарары от латинского tartaros;
французское trésor с двумя г от греческого thesauros с одним г и т.д.; слоговые удвоения персеве-
ративного характера в словах древних языков: themo-tithemi, tango-tetigi, и т.д.
Очень нередки персеверативные ошибки во время разучивания трудных пассажей на музыкаль-
ном инструменте. Иногда легче персеверативно ударить на фортепиано лишнюю ноту, чем сделать тре-
бующийся по нотному тексту внеритменный пропуск - синкопу. На циклографических записях
игры на фортепиано хорошо видно, как даже законченные мастера делают в моменты подобных
синкопических пропусков персеверативные холостые движения рукой в воздухе, поскольку это гораз-
до легче, чем затормозить руку (см. рис. 61). В утомленном состоянии нередко возникают персевера-
тивные ошибки в письме.
В локомоторных движениях мы встречаемся с персеверациями там, где циклический процесс
подвергается резкому переключению на однократный акт, требующий большой силы и внимания.
При прыжке в длину с разбега многие мастера, уже оттолкнувшись от земли, в полетной фазе
прыжка, продолжают перебирать ногами в ритме предшествующего бега (так называемые ”ножницы”),
что очень ясно видно на хронофотографических снимках (рис. 100). Нередко высказывается мнение,
что ”ножницы” оказывают полезное механическое действие на результат прыжка. Это неверно,
так как никакие телодвижения при отсутствии внешней точки опоры не могут повлиять на прыжко-
вый полет. Но может быть для прыгающего и легче в момент резкого напряжения сил при оттал-
кивании и прыжке отдаться на волю персеверации, чем отвлекаться на борьбу с ней, тем более
что помешать успеху она тоже не может.
Персеверации эффекторного, гипердинамического типа при норме говорят об избытке сил, ищущем
1 Такой исключительный знаток детской речи, как К.И. Чуковский, настойчиво подчеркивает это
обстоятельство. ”Дети более младшего возраста пользуются рифмой не для игры, не для украшения
речи, но... для облегчения ее. При неразвитом голосовом аппарате младенца ему значительно легче
произносить схожие звуки, чем разные. Легче, например, сказать, ”покочиночи”, чем ”покойной
ночи”. Оттого, чем меньше ребенок, чем хуже владеет речью, тем сильнее его тяготение к рифме” (”От
двух до пяти”. 1937. С. 238). ”Ненормальны или больны те младенцы, которые не проделывают
таких языковых экзерсисов. Это именно экзерсисы, и трудно придумать более рациональную систему
упражнения в искусстве речи, чем такое многократное повторение всевозможных звуковых вариа-
ций”... ”Чтобы научиться управлять (звуками языка) по своему произволу, он по очереди произносит
их снова и снова, причем, ради зкономии сил, в каждом новом звукосочетании изменяет только один
звук, а все остальные оставляет нетронутыми” (Там же. С. 240).
На такое же явление персеверации слов у своего четырехлетнего сына указывает А.Н. Толстой:
”Никита взглянул на меня строгими глазами и сказал: - Послушайте, послушайте (у него есть привычка
по два раза повторять некоторые слова), это же в самом деле глупо... Отдайте мне бумагу, а сами
пишите, пишите, пишите коротенькую историю” (Толстой А. Приключения Никиты Рощина.
Предисловие). (Выделения в цитатах сделаны Н.А. Бернштейном. - Примеч. ред.).
2 Несколько примеров, представляющих известный интерес для речедвигательного анализа: ”Клара
украла у Карла кораллы, Карл у Клары украл кларнет”; простые, но нелегкие скороговорки: ”король-
орел-король-орел”, ”шла Саша по шоссе”, ”cinq sangsues à cent cinq sous” и тому подобное.

Советский психофизиолог и физиолог, основоположник исследований в области физиологии активности

Родился в семье психиатра и педагога Александра Николаевича (Натановича) Бернштейна. Окончил московскую Медведниковскую гимназию с расширенным курсом естественных наук и математики. В 1913 поступил на историко-филологический факультет Московского университета, рассчитывая стать филологом, однако в связи с началом Первой мировой войны перевёлся на медицинский (1914-1919), одновременно работая санитаром в одном из московских лазаретов.

В 1919-1921 служил военным врачом в Красной армии в Казани. В 1921-1922 стажировался и работал в различных медицинских учреждениях Москвы, в том числе в Московском психологическом и Медико-педологическом институтах.

В 1922-1925 в лаборатории биомеханики в Центральном институте труда (ЦИТ); 1923 заведующий нейромеханической лабораторией, где разрабатывал кимоциклографический и циклограмметрический методы исследования движений, закономерности их физиологии, читал курс по биомеханике трудовых движений.

В 1924-1925 читал биомеханику на повторительных курсах для врачей и курсах научной организации труда ЦИТ. В 1924-1927 заведовал лабораторией по изучению движений Московского государственного института экспериментальной психологии (ныне Психологический институт им. Л. Г. Щукиной РАО). С 1925 в Государственном институте физической культуры, с 1926 - консультант в Государственном институте охраны труда, с 1927 заведующий лабораторией физиологии труда; исследовал проблемы биомеханики ходьбы, двигательных реакций. В 1921-1927 приглашался консультантом в различные медицинские институты и клиники Москвы, выступал с рядом докладов на съездах. В апреле 1924 посетил Ленинград, где познакомился с работами в лаборатории И. П. Павлова.

С 1932 заведовал лабораторией биомеханики в Центральном институте труда инвалидов. В 1933 создал лабораторию физиологии движений во Всесоюзном институте экспериментальной медицины (ВИЭМ). В 1941-1943 в эвакуации в Улан-Удэ и Ташкенте, работал в Республиканском санитарном институте Наркомздрава Узбекской ССР. С 1943 профессор кафедры физиологии Государственного института физической культуры и кафедры психологии МГУ, работал в Отделении восстановительной терапии ВИЭМ.

С 1949 в обстановке сталинской борьбы с «космополитизмом» был отстранён от экспериментальной работы, в 1950 подвергнут критике за «антипавловскую позицию». После смерти И. В. Сталина реабилитирован. В последние годы жизни сосредоточился на теоретических исследованиях, разработке теории физиологии активности, чтении лекций.

Доктор медицинских наук (1935), член-корреспондент АМН СССР (1946). Лауреат Государственной премии СССР за работу «О построении движений» (1948).

Заложил основы современной биомеханики и теории управления движениями человека. Труды Бернштейна оказали влияние на развитие физиологии, психологии, спортивной педагогики, биологии, кибернетики, философии естествознания, а педагогическое приложение идей используется в сферах, требующих формирования двигательных навыков.

Создал одну из первых чётких формулировок понятия обратной связи в физиологии, высказал идею поуровневой организации движений. В связи с недостаточностью понятия «рефлекторной дуги» для объяснения двигательных актов ввёл понятие «рефлекторного кольца», основанное на трактовке всей системы отношений организма со средой как непрерывного циклического процесса. Двигательные рефлексы рассматривал как «элементарные действия», несводимые к нервным импульсам.

Концепция физиологии и биологии активности положила начало развитию новых принципов понимания жизнедеятельности организма. Поставив в центр внимания проблему активности организма по отношению к среде, Бернштейн подвёл широкую научную, в том числе экспериментальную, базу под изучение целесообразного характера действий живого организма. Изменил представление о локализации функций в нервной системе, предложил эффективные приёмы восстановления её нарушений. Сформулированный им принцип сенсорных коррекций стал одним из важнейших в современных подходах к регуляции поведения человека и животных.

Основные труды

Биомеханика для инструкторов. М., 1926. (Переиздание ).

Общая биомеханика. Основы учения о движениях человека. М., 1926.

Физиология человека. Учеб. для ин-тов физ. культуры. М., 1946 (соавторы А. Н. Крестовников, М. Е. Маршак и др.).

О построении движений. М., 1947. (Переиздания: ; в кн. «Биомеханика и физиология движений». М., 1997).

Очерки по физиологии движений и физиологии активности. М., 1966. (Переиздания: в кн. «Физиология движений и активность». М., 1990 ; в кн. «Биомеханика и физиология движений». М., 1997).

Фейгенберг И. М . Николай Бернштейн: от рефлекса к модели будущего. М., 2004.

(1896-1966) - выдающийся сов. психофизиолог. Концепция физиологии активности, созданная Б. на основе теоретического и эмпирического анализа естественных движений человека (спортивных, трудовых, после ранений и травм органов движения и др.) с использованием разработанных Б. новых методов их регистрации и обработки (циклография), послужила основой для глубокого понимания целевой детерминации человеческого поведения (см . Двигательная задача , Координация движений), механизмов формирования двигательных навыков, уровней построения движений в норме и их коррекции при патологии.

В работах Б. получили свое обоснование решение психофизиологической проблемы в материалистическом духе с использованием последних достижений физиологической науки, а также отдельные идеи кибернетики. Концепция Б. нашла широкое практическое применение при восстановлении движений раненых во время Великой Отечественной войны и в последующий период, при формировании спортивных навыков, создании различных кибернетических устройств и др. См . также Двигательный навык , Двигательный состав , Действие , Живое движение , Рефлекторное кольцо . (Е.Е. Соколова)

С именем Н. Бернштейна связан современный этап развития биомеханики, его «физиология движений» составляет теоретическую основу этой науки. Идеи Бернштейна нашли широкое практическое применение при восстановлении движений у раненых во время Великой Отечественной войны и в последующий период, при формировании спортивных навыков, создании различных кибернетических устройств и др.

Психологический словарь. А.В. Петровского М.Г. Ярошевского

Бернштейн Николай Александрович (1896–1966) - российский психофизиолог. Создал и применил новые методы исследования движений человека. Анализ полученных результатов позволил Б. сформулировать положение о том, что приобретение навыка обусловлено не повторением одних и тех же иннервационных команд, а выработкой умения каждый раз заново решать двигательную задачу.

Б. показал, что движение направляется моделью потребного будущего. Созданная им общая теория построения движений (см . ) изложена в монографии «О построении движения» (1947). Последующие работы Б. посвящены изучению основ физиологии активности.

Литература

  • Общая биомеханика. Москва, изд-во ВЦСПС, 1926.
  • Техника изучения движений. Москва, изд-во «Стандартизация и рационализация», 1934.
  • Проблемы взаимоотношений координации и локализации. Архив биологических наук, т. XXXVIII, вып. I, 1935.
  • Сборник «Исследования по биодинамике локомоций (ходьба взрослого нормального мужчины)». Москва, Медгиз, 1935.
  • Некоторые данные по биодинамике бега выдающихся мастеров:
    1. Опорная динамика бега. Журнал «Теория и практика физической культуры», 1937, вып.3.
    2. Динамика ноги при беге. Там же, вып.4, 1937.
  • К вопросу о природе и динамике координационной функции. Ученые записки МГУ, вып. 90, «Движение и деятельность», 1943.
  • О построении движений. Москва, Медгиз, 1946. (удостоена Государственной премии).
  • К вопросу о расчете беговых дорожек. Журнал «Теория и практика физической культуры», 1946, вып.10.
  • Биодинамика стартовых движений. Журнал «Теория и практика физической культуры», 1947, вып. 8.
  • Некоторые назревающие проблемы регуляции двигательных актов. Журнал «Вопросы психологии», 1957, вып.6.
  • Очередные проблемы физиологии активности. Сборник «Проблемы кибернетики», вып.6, 1961.
  • Пути и задачи физиологии активности// Вопросы философии.- 1961.- №6;
  • Пути развития физиологии и связанные с ними задачи кибернетики. Сборник «Биологические аспекты кибернетики». АН СССР, 1962.
  • На путях к биологии активности. Журнал «Вопросы философии», 1965, вып.10.
  • Очерки по физиологии движений и физиологии активности. Москва, «Медицина», 1966 (посмертно).
  • О ловкости и ее развитии. Москва, изд-во «Физкультура и спорт», 1991 (посмертно).

назад в раздел .

кл слова: научные, Бернштейн Н.А., движение, двигательные навыки

Никола́й Алекса́ндрович Бернште́йн (24 октября (5 ноября) 1896, Москва — 16 января 1966, там же) — советский психофизиолог и физиолог, создатель нового направления исследований — физиологии активности. Сын психиатра Александра Бернштейна, внук физиолога Натана Бернштейна. Лауреат Сталинской премии.

Концепция физиологии активности, созданная Бернштейном на основе глубокого теоретического и эмпирического анализа естественных движений человека в норме и патологии (спортивных, трудовых, после ранений и травм органов движения и др.) с использованием разработанных Бернштейном новых методов их регистрации, послужила основой для глубокого понимания целевой детерминации человеческого поведения, механизмов формирования двигательных навыков, уровней построения движений в норме и их коррекции при патологии. В работах Бернштейна получило свое обоснование решение психофизиологической проблемы в материалистическом духе с использованием последних достижений физиологической науки, а также отдельные идеи кибернетики.
С именем Н. Бернштейна связан современный этап развития биомеханики, его «физиология движений» составляет теоретическую основу этой науки.
Идеи Бернштейна нашли широкое практическое применение при восстановлении движений у раненых во время Великой Отечественной войны и в последующий период, при формировании спортивных навыков, создании различных кибернетических устройств и др.

Звания и награды

Член-корреспондент Академии медицинских наук СССР.
За монографию «О построении движений» удостоен Сталинской премии (1948).

Общая биомеханика (1926)
Проблема взаимоотношений координации и локализации (1935)
О построении движений (1947)
Очерки по физиологии движений и физиологии активности (1966)
Физиология движений и активность (1990)
О ловкости и её развитии (1991) (НАЧНУ ВЫКЛАДЫВАТЬ В БЛИЖАЙШЕЕ ВРЕМЯ ИЩИТЕ КЛ СЛОВО БЕРНШТЕЙН Н.А.)

Основные положения теории Н.А. Бернштейна

В основе научного творчества Н.А. Бернштейна лежит его новое понимание жизнедеятельности организма, в соответствии с которым он рассматривается не как реактивная система, пассивно приспосабливающаяся к условиям среды (именно это следует из условно-рефлекторной теории), а как созданная в процессе эволюции активная, целеустремленная система. Иначе говоря, процесс жизни есть не простое «уравновешивание с внешней средой», а активное преодоление этой среды.

Фигура этого ученого является одной из наиболее значительных среди исследователей мозга XX в. Выдающейся его заслугой является то, что он первый в мировой науке использовал изучение движений в качестве способа познания закономерностей работы мозга. По мнению Н.А. Бернштейна, для тех, кто хочет понять, как работает мозг, как функционирует центральная нервная система (ЦНС), в природе едва ли существует более благодатный объект, чем исследование процессов управления движениями. Если до него движения человека изучали для того, чтобы их описать, то Н.А. Бернштейн стал изучать их, чтобы понять, как происходит управление ими.

В процессе исследования этих механизмов им были открыты такие фундаментальные явления в управлении, как сенсорные коррекции и принцип иерархического, уровневого управления, которые лежат в основе работы этих механизмов и без понимания которых правильное представление о закономерностях работы мозга в процессе управления движениями оказывается невозможным.

Следует особо подчеркнуть, что открытие этих явлений имело громадное значение и для развития многих других областей человеческого знания. Особенно наглядно это проявилось по отношению к одной из наиболее ярких наук XX столетия - кибернетике. Как известно, эта область современных знаний возникла в результате симбиоза (взаимовыгодное сосуществование) таких наук, как математика и физиология (ее раздела «Высшая нервная деятельность»). В основе всех кибернетических систем лежит открытый физиологами и удачно использованный математиками принцип обратной связи. Это название есть не что иное, как современное и более распространенное название принципа сенсорных коррекций, который был впервые описан Н.А. Бернштейном еще в 1928 г., т.е. за 20 лет до того, как это сделал создатель кибернетики Норберт Винер.

В соответствии с теорией сенсорных коррекций для выполнения какого-либо движения мозг не только посылает определенную команду мышцам, но и получает от периферийных органов чувств сигналы о достигнутых результатах и на их основании дает новые корректирующие команды. Таким образом, происходит процесс построения движений, в котором между мозгом и исполнительными органами существует не только прямая, но и непрерывная обратная связь.

Дальнейшие исследования привели Н.А. Бернштейна к гипотезе о том, что для построения движений различной сложности команды отдаются на различных уровнях (иерархических этажах) нервной системы. При автоматизации движений функции управления передаются на более низкий (неосознаваемый) уровень.

Еще одно из замечательных достижений Н.А. Бернштейна представляет собой открытое им явление, которое он назвал «повторением без повторения». Суть его заключается в следующем. При повторении одного и того же движения (например, шагов в ходьбе или беге), несмотря на один и тот же конечный результат (одинаковая длина, время выполнения и т.п.), путь работающей конечности и напряжения мышц в чем-то различны. При этом многократные повторения таких движений не делают эти параметры одинаковыми. Если соответствие и встречается, то не как закономерность, а как случайность. А это значит, что при каждом новом выполнении нервная система не повторяет одни и те же команды мышцам и каждое новое повторение совершается в несколько отличных условиях. Поэтому для достижения одного и того же результата нужны не одинаковые, а существенно различные команды мышцам.

На основании этих исследований был сформулирован важнейший для обучения движениям вывод: тренировка движения состоит не в стандартизации команд, не в «научении командам», а в научении каждый раз отыскивать и передавать такую команду, которая в условиях каждого конкретного повторения движения приведет к нужному двигательному результату.

Из всего этого следует еще один важный вывод: движение не хранится готовым в памяти, как это следует из условно-рефлекторной теории (и как, к сожалению, многие думают до сих пор), не извлекается в случае нужды из кладовых памяти, а каждый раз строится заново в процессе самого действия, чутко реагируя на изменяющуюся ситуацию. В памяти хранятся не штампы самих движений, а предписания (логарифмы) для их конструирования, которые строятся на основе механизма не стереотипного воспроизведения, а целесообразного приспособления.

Неоценимое значение имеет теория Н.А. Бернштейна и для понимания роли сознания в управлении движениями. Во многих учебных пособиях до сих пор можно встретить утверждение о том, что проникновение сознанием в каждую деталь движения содействует повышению скорости и качества его освоения. Это слишком упрощенное и во многом ошибочное утверждение. Нецелесообразность и даже принципиальная невозможность подобного тотального контроля со стороны сознания очень образно и убедительно могут быть продемонстрированы в ряде примеров. Приведем один из них.

Для этого рассмотрим, каким образом обеспечивается деятельность такого исключительного по своей сложности, точности, подвижности и жизненной важности органа, каким является зрительный аппарат человека.

Его двигательную активность обеспечивают 24 работающих попарно мышцы. Все эти мышцы осуществляют свою работу в тончайшем взаимном согласовании с раннего утра и до позднего вечера, причем совершенно бессознательно и в большинстве своем непроизвольно. Нетрудно себе представить, что если бы управление этими двумя дюжинами мышц, осуществляющих всевозможные согласования поворотов глаз, управление хрусталиком, расширение и сужение зрачков, наведение глаз на фокус и т.п., требовало произвольного внимания, то на это понадобилось бы столько труда, что лишило бы человека возможности произвольного управления другими органами тела.

Уровни построения движения

Прежде чем перейти к непосредственному рассмотрению механизмов, лежащих в основе освоения движений с позиции теории Н.А. Бернштейна, необходимо хотя бы в самом общем и кратком виде познакомиться с тем, что представляют собой уровни построения движений, что явилось основой их формирования и поступательного развития.

На протяжении долгих тысячелетий эволюции животного мира такой первоосновой и главной причиной развития явилась жизненная необходимость движения, все усложняющаяся двигательная активность. В процессе эволюции имело место безостановочное усложнение и увеличение разнообразия двигательных задач, решение которых было жизненно необходимо в борьбе различных особей за свое существование, за свое место на планете.

Этот процесс непрерывного двигательного приспособления сопровождался анатомическими усложнениями тех центральных нервных структур, которые должны были управлять новыми видами движений и которые для этого обрастали сверху новыми аппаратами управления, все более мощными и совершенными, более приспособленными к решению все усложняющихся двигательных задач. Эти вновь возникающие более молодые устройства не отрицали и не устраняли более древние, а лишь возглавляли их, благодаря чему формировались новые более совершенные и работоспособные образования.

Каждое из таких поочередно возникавших новых устройств мозга приносило с собой новый список движений, точнее говоря, новый круг посильных для данного вида животных двигательных задач. Следовательно, возникновение каждой очередной новой мозговой надстройки знаменовало собой биологический отклик на новое качество или новый класс двигательных задач.

Это также является убедительным свидетельством того, что именно двигательная активность, ее усложнение и разнообразие являлись на протяжении тысячелетий главной причиной развития и совершенствования функций головного мозга и нервной системы в целом. В результате такого развития сформировалось человеческое координационно-двигательное устройство ЦНС, представляющее собой наивысшую по сложности и совершенству структуру, превосходящую все другие подобные системы у каких бы то ни было живых существ. Эта структура состоит из нескольких разновозрастных (в эволюционном плане) уровней управления движениями, каждый из которых характеризуется своими особыми мозговыми анатомическими образованиями и особым, характерным только для него составом той чувствительности, на которую он опирается в своей деятельности, из которой он образует свои сенсорные коррекции (свое сенсорное поле).

Постепенно увеличиваясь, сложность двигательных задач становилась такой, что ни один даже самый молодой и совершенный уровень сам не мог справиться с их решением. В результате ведущему более молодому уровню приходилось привлекать к себе помощников из числа нижележащих более древних уровней, передавая им все большее количество вспомогательных коррекций, обеспечивающих плавность, быстроту, экономичность, точность движений, лучше оснащенных именно для этих видов коррекций. Такие уровни и их сенсорные коррекции называют фоновыми. А тот уровень, который сохраняет за собой верховное управление двигательным актом, его важнейшими смысловыми коррекциями, называется ведущим.

Таким образом, физиологический уровень построения движений - это совокупность взаимно обусловливающих друг друга явлений, таких как: а) особый класс двигательных задач; б) соответствующий им тип коррекций; в) определенный мозговой этаж и (как итог всего предыдущего) г) определенный класс (список) движений.

В настоящее время у человека выделяют пять уровней построения движений, которые обозначаются буквами А, B, C, D и E и имеют следующие названия:

A - уровень тонуса и осанки;
B - уровень синергии (согласованных мышечных сокращений);
C - уровень пространственного поля;
D - уровень предметных действий (смысловых цепей);
E - группа высших кортикальных уровней символической координации (письма, речи и т.п.).

Каждому из этих уровней соответствуют определенные анатомические образования в ЦНС и характерные только для него сенсорные коррекции.

Относительная степень развития отдельных координационных уровней у разных людей может быть различной. Поэтому та или иная степень развития и тренируемости свойственна не отдельным движениям, а целым контингентам движений, которыми управляет тот или иной уровень.

Таким образом, все многообразие двигательной активности человека представляет собой несколько раздельных пластов, различающихся по происхождению, смыслу и множеству физиологических свойств. Качество управления движениями обеспечивается согласованной, синхронной деятельностью ведущего и фоновых уровней. При этом ведущий уровень обеспечивает проявление таких характеристик, как переключаемостъ, маневренность, находчивость, а фоновые уровни - слаженность, пластичность, послушность, точность.

Основные трудности управления движениями

Для того чтобы понять необходимость всей той сложной, многоуровневой системы управления, которая представлена выше, необходимо иметь ясное представление о тех трудностях, которые приходится преодолевать нервной системе в процессе управления движениями. Эти трудности обусловлены следующими причинами:

необычайное богатство подвижности двигательного аппарата человеческого тела, требующее распределения внимания между десятками и сотнями видов подвижности с целью стройного согласования их между собой;

необходимость ограничения огромного избытка степеней свободы, которыми насыщено человеческое тело;

упругая податливость мышечных тяг, которые не могут так же точно и строго передавать движение, как твердые рычаги машин или жесткий буксир;

множество внешних сил (инерции, трения, реактивных и др.), возникающих в процессе движения, направленность и интенсивность действия которых трудно (а зачастую и невозможно) предугадать.

В своей повседневной жизни человек нисколько не задумывается о существовании этих трудностей, легко выполняя многие сложные двигательные действия. Вместе с тем каждой из этих трудностей в отдельности достаточно, чтобы сделать невыполнимой задачу создания искусственного механизма, хотя бы в отдаленной степени сравнимого по своей управляемости с человеческим организмом.

Многие сложнейшие физиологические устройства здорового организма человеком просто не замечаются, пока не возникают случаи, когда это устройство вдруг выбывает из строя. Только тогда и обнаруживается, как оно важно в норме и какие огромные нарушения вызываются его расстройством. Так происходит, например, в случаях нарушения чувствительных проводящих путей спинного мозга, по которым передаются ощущения от суставно-мышечного аппарата (обратная афферентация) при заболеваниях спинной сухоткой, или табесом. При этом теряется возможность ощущать положение той или иной части тела (в повседневной жизни так может получиться, если отсидеть или отлежать руку или ногу). У больных полностью нарушается координация движений, хотя сами мышцы еще в принципе сохраняют свои функции: они или вообще не могут ходить, или с трудом передвигаются с опорой на два костыля при обязательном зрительном контроле движений.

Какое огромное распределение внимания потребовалось бы, если бы всеми элементами сложного движения, например такого, как ходьба, бег, метание, нужно было управлять сознательно, с обращением внимания на каждый из них! Одна только такая трудность может сделать движение неуправляемым.

Однако она выглядит совсем незначительной по сравнению с другой, которая связана с необыкновенной подвижностью человеческого тела. Подвижность кинематических цепей тела человека огромна и исчисляется десятками степеней свободы. Так, подвижность запястья относительно лопатки насчитывает 7 степеней свободы, а подвижность кончиков пальцев относительно грудной клетки - 16. Для сравнения надо отметить, что подавляющее большинство машин, работающих без непрерывного управления человеком, при всей кажущейся их сложности обладают всего одной степенью свободы, т.е. тем, что называется вынужденным движением.

Две степени свободы встречаются редко. Переход от одной степени свободы к двум означает огромный качественный скачок. Две степени означают, что подвижная точка получает свободу выбора любой из бесконечного множества доступных траекторий движения. Одним из редких примеров в технике может служить автоматическое управление морским судном, представляющее собой соединение мощного и точного компаса и передачи к машинам, управляющим рулем. Благодаря этому устройству корабль, имеющий на поверхности моря две степени свободы (т.е. возможность двигаться в любом направлении), автоматически направляется по одному совершенно определенному пути. Этот пример показывает, что выбор пути в таких условиях может происходить только на основе постоянного контроля за ходом движения со стороны бдительного органа чувств, роль которого в данном случае выполняет компас.

Три степени свободы означают для вещественной точки абсолютную свободу передвижения внутри какого-то участка пространства, границ которого она в состоянии достигнуть. Например, тремя степенями свободы обладает совершенно ничем не связанная вольно порхающая в воздухе пушинка.

Таким образом, трудность номер один, которая создается необходимостью распределять внимание между множеством подвижных шарниров (суставов), оказывается не столь значимой по сравнению с трудностью номер два - необходимостью преодоления непомерного избытка степеней свободы, которыми насыщено человеческое тело.

Координация - это и есть преодоление избыточных степеней свободы органов движения, превращение их в управляемые системы.

Очередная трудность управления связана с особенностями мышечной тяги. Мышцы - это единственное средство, которым располагает наш организм для совершения работы, т.е. активных телодвижений. Они представляют собой своеобразные упругие жгуты, которыми подвижные части тела оснащены со всех сторон.

Управление движениями посредством упругих тяг представляет собой очень большие трудности, потому что двигательный результат здесь зависит не только от того, как ведут себя сами тяги, но и от множества других, побочных и неподвластных причин, среди которых ведущую роль играет действие уже упоминавшихся всевозможных внешних сил.

Каким же образом организму удается справиться с таким многообразием, на первый взгляд, неразрешимых трудностей, да еще и так, что человек их даже не замечает, а зачастую и не догадывается об их существовании? Располагая неограниченными возможностями в плане подвижности, человеческое тело может быть управляемым только в том случае, если каждая из степеней свободы будет «обуздана» определенным видом чувствительности, который будет вести за ней непрерывный контроль и корректировку.

Поэтому спасительным принципом, обеспечивающим управляемость костно-мышечного двигательного аппарата человека, явился принцип контроля над движением при помощи чувствительной (афферентной) сигнализации, непрерывно поступающей от органов чувств, и внесения на ее основе непрерывных поправок в каждый момент движения. Этот принцип назван Н.А. Бернштейном принципом сенсорных коррекций («сенсорный» в переводе с латинского - «опирающийся на чувствительность»). При этом преобладающей является мышечно-суставная (проприоцептивная) чувствительность. «Проприоцептивный» («сам себя воспринимающий») - это чувствительность собственного тела. Все другие виды чувствительности (зрение, слух, осязание и др.) в различных случаях в большей или меньшей степени выступают лишь в роли помощников проприоцептивной чувствительности.

Найдя такой эффективный принцип преодоления всевозможных трудностей управления, природа в дальнейшем позаботилась о формировании и совершенствовании нервных структур и механизмов, обеспечивающих его реализацию. В результате мы и получили то устройство нервной системы, которое обеспечивает как управление уже освоенными движениями, так и процесс формирования новых двигательных действий.

Формирование движений у детей и подростков

Естественные двигательные возможности растущего организма определяются процессом созревания и совершенствования функций двигательных структур центральной нервной системы. Формирование всех отделов мозга, отвечающих за движение, и проводящих их нервных путей заканчивается к 2-летнему возрасту. Дальше уже начинается длительная работа по совершенствованию их функций, по прилаживанию друг к другу всех уровней построения движений, наиболее существенные черты которых происходят между 2 и 14 годами - возрастом окончательного созревания.

Возраст 3 года - это время, когда ребенок окончательно перестает быть «высшей обезьянкой» и впервые осваивает такие двигательные действия, которые совершенно недоступны обезьяне. В этом же возрасте начинает обнаруживаться и неравноценность между правой и левой сторонами тела.

Возраст от 3 до 7 лет представляет собой период преимущественно количественного усиления и накапливания всех уровней построения движений, которые начинают заполняться свойственным им содержанием. Дети этого возраста уже не увальни - они грациозны и подвижны.

Следующий период - это возраст 7-10 лет. Набор двигательных навыков детей пополняется еще двумя - силой и точностью. Это возраст, в котором жизненная практика очень чутко уловила необходимость приучения к трудовым навыкам. Это период перехода в работоспособное состояние пирамидной двигательной системы ребенка. В это время формируются мелкие и точные движения, и ребенку уже есть чем занять себя, сидя за столом. У мальчиков совершенствуются метательные и ударные движения.

После 10-11 лет наступает сложный период «ломки», охватывающей все стороны жизнедеятельности растущего организма, вплоть до 14-15-летнего возраста. Поэтому данный период развития очень трудно охарактеризовать. Гармония и согласие, достигнутые к этому времени между отдельными уровнями построения движений, вновь как бы нарушаются. На них отражаются огромные сдвиги в деятельности желез внутренней секреции, всей многосложной химии пубертатного периода (периода полового созревания).

Такая перестройка всего обмена веществ рассматривается как ударное строительство, которому приносится в жертву многое другое. Одним из следствий является неуклюжесть, временное снижение ловкости, а иногда и силы. Эти нарушения никак не связаны с какими бы то ни было непорядками в самих двигательных системах мозга. Поэтому необходимо спокойно продолжать работу по наполнению уровней свойственным им содержанием, т.е. стараться расширять свой двигательный опыт путем освоения все новых разнообразных движений. Такая систематическая работа очень скоро окажет благотворное влияние как на сами двигательные проявления, так и на душевную, эмоциональную и социальную стороны жизни растущего человека.

Формирование двигательного навыка

Правильное и результативное выполнение любого движения возможно только благодаря стройному взаимодействию нескольких уровней построения движений. Такое взаимодействие не возникает сразу, само собой. Для его формирования требуется большая работа. Эта работа и есть то, что называется упражнением, в результате которого и происходит формирование двигательных умений и навыков.

Этот процесс по сути представляет собой изменяющийся характер управления движениями, внешне выражающийся в неодинаковой степени владения двигательным действием.

Двигательное умение - это такая степень владения техникой действия, когда управление осуществляется при ведущей роли сознания, а само действие отличается нестабильным способом решения двигательной задачи.

Уже из этого определения видно, что самой характерной чертой двигательного умения является то, что управление движениями происходит при ведущей роли сознания. Другими характерными чертами двигательного умения являются:

отсутствие стабильности, постоянный поиск способов наилучшего решения двигательной задачи;

невысокая скорость;

малая прочность, неустойчивость к сбивающим факторам;

отсутствие возможности для переключения внимания на объекты окружающей обстановки.

Первоначальное умение выполнять двигательное действие возникает на основе следующих факторов:

уже имеющегося двигательного опыта, ранее выработанных координаций, ощущений и восприятий;

состояния общей физической подготовленности;

знания техники действия и особенностей его выполнения;

сознательных попыток построить некоторую новую для себя систему движений.

Несмотря на перечисленные недостатки, двигательные умения имеют большое значение в процессе овладения движениями, которое заключается в следующем:

основой двигательного умения является творческий поиск способов выполнения движений, что несет в себе большие образовательные возможности;

двигательные умения имеют большую познавательную ценность, поскольку приучают анализировать сущность двигательных задач, условия их решения, управлять собственной умственной и двигательной деятельностью;

двигательные умения являются тем уровнем владения двигательным действием, который характерен для всех подводящих упражнений;

двигательное умение представляет собой первый уровень владения двигательным действием, являющийся переходной стадией к формированию двигательного навыка, которую миновать невозможно.

Двигательный навык - это такая степень владения техникой действия, при которой управление движениями происходит автоматически и выполнение действия отличается высокой надежностью.

Двигательные навыки, как высшая ступень владения двигательным действием, имеют исключительно большое значение в учебной, трудовой, бытовой и физкультурно-спортивной практике. Для них характерны свои отличительные черты, многие из которых являются прямой противоположностью тем, которые характерны для умений. Основными из них являются:

автоматизированный характер управления действием;

высокая быстрота действия;

стабильность результата действия;

чрезвычайная прочность и надежность.

Каким же образом и благодаря чему становится возможным достижение таких характеристик двигательного действия? И на этот сложный вопрос четкий ответ дает учение о построении движений Н.А. Бернштейна.

В соответствии с этой теорией навык активно формируется нервной системой, и в этом процессе последовательно сменяют друг друга существенно различные между собой и расположенные в строгой последовательности фазы или этапы.

Такими фазами являются: определение ведущего уровня; определение двигательного состава навыка; выявление и роспись коррекций; автоматизация, стандартизация и стабилизация двигательного навыка. Границы перечисленных фаз формирования навыка в значительной мере условны и могут частично налагаться друг на друга.

На основании всего изложенного в данном разделе материала можно сделать следующие очень важные заключения:

навык - это координационная структура, представляющая собой освоенное умение решать тот или иной вид двигательной задачи;

построение двигательного навыка есть активный процесс, а не пассивное следование потоку внешних воздействий, как это следует из теории условных рефлексов;

построение двигательного навыка есть смысловое цепное действие, состоящее из целого ряда качественно различных фаз, логически переходящих одна в другую;

двигательный навык не является раз и навсегда закрепленным шаблоном или стереотипом и является вариативным и пластичным в полную меру того уровня, на котором осуществляется управление им.

В связи с представленными выше положениями необходимо обратить внимание еще на одно важное обстоятельство. Многие ученые как у нас в стране, так и за рубежом расходятся в представлениях о том, что является первичным - умение или навык. В приведенном выше определении двигательного навыка и многих других положениях теории Н.А. Бернштейна очень убедительно обосновано и подтверждено положение о том, что первой стадией овладения действием является стадия умения, а высшей и последней - стадия навыка. Иначе говоря, двигательное умение переходит в двигательный навык владения действием, а не наоборот, как можно прочесть в ряде учебников и учебных пособий.

В соответствии с изложенными представлениями все описанные выше фазы процесса формирования двигательного навыка могут быть объединены в три стадии, в течение которых происходит преодоление избыточных степеней свободы движущихся органов и превращение их в управляемые системы.

Первая стадия характеризуется невысокой скоростью, напряженностью, неточностью движений. Это объясняется необходимостью блокирования излишних степеней свободы кинематической цепи. Этой стадии соответствуют первые две фазы становления навыка и частично третья.

Вторая стадия характеризуется постепенным исчезновением напряженности, становлением мышечной координации, повышением скорости и точности двигательного акта. Для этой стадии характерны третья и четвертая фазы - роспись коррекций и автоматизация управления.

Третья стадия формирования навыка характеризуется снижением доли участия активных мышечных усилий в осуществлении движения за счет использования реактивных сил, что обеспечивает динамическую устойчивость движений и экономичность энергозатрат. В течение этой стадии реализуются фазы стандартизации и стабилизации двигательного навыка.

Общая структура и основные задачи процесса освоения двигательных действий

Все рассмотренные выше этапы и стадии формирования двигательного навыка, изложенные в соответствии с теорией о построении движений Н.А. Бернштейна, находятся в полном соответствии с хорошо известными и широко распространенными представлениями об общей структуре процесса обучения двигательным действиям, в которой выделяют три этапа усвоения учебного материала.

Работа на этих этапах характеризуется определенными отличительными чертами, которые находят отражение в особенностях задач освоения, а также в используемых средствах и методах.

В соответствии с этой структурой содержанием первого этапа являются формирование целостного представления о двигательном действии и его первоначальное разучивание. На этом этапе формируются предпосылки для усвоения двигательного действия и возникает первоначальное двигательное умение, позволяющее выполнять двигательное действие в общих чертах.

Второй этап характеризуется углубленным детализированным разучиванием. В результате на этом этапе происходит уточнение двигательного умения, и оно частично переходит в навык.

Третий этап - это процесс достижения мастерства в овладении техникой осваиваемого двигательного действия. Ему соответствуют закрепление и дальнейшее совершенствование двигательного действия, в результате чего и формируется прочный навык. Происходит приспособление навыка к различным условиям его выполнения.

Эта общая структура процесса освоения двигательного действия не должна рассматриваться как совершенно неизменная стандартная схема. В определенной мере она может быть конкретизирована и модифицирована в зависимости от конкретных целей, задач освоения двигательных действий, их особенностей и т.п. Так, в условиях массового образования основное внимание уделяется первому и частично второму этапам, а дальнейшее совершенствование навыков происходит в процессе самостоятельных занятий. В то же время в спортивной тренировке имеют место все три этапа, причем последний рассматривается как главный предмет деятельности и представляет собой многолетний процесс.

Двигательные ошибки: их предупреждение и исправление

Выполнить движение сразу правильно, без ошибок в обычных условиях, как правило, оказывается невозможно. Данное обстоятельство очень осложняет процесс освоения движений. Некоторые ошибки обусловлены закономерностями формирования двигательного навыка, другие связаны с отсутствием необходимых представлений, третьи - с несоблюдением определенных условий и т.п.

Успех в освоении движений во многом зависит от того, насколько правильно определены причины происхождения двигательных ошибок и насколько методы их исправления соответствуют истинным причинам их возникновения. Наиболее типичными являются следующие группы ошибок:

внесение в двигательный акт дополнительных ненужных движений;

закрепощенность движений, несоразмерность мышечных усилий, ненужное привлечение дополнительных групп мышц;

отклонения в направлении и амплитуде движений;

искаженность общего ритма двигательного действия;

выполнение движения на недостаточно высокой скорости.

Основными причинами этих ошибок являются:

неправильное или недостаточно полное представление о структуре и двигательном составе осваиваемого двигательного действия;

неправильное или недостаточно полное понимание двигательной задачи;

недостаточность двигательного опыта занимающегося;

недостаточная физическая подготовленность занимающегося;

неуверенность, боязнь, чувство утомления и т.п.;

неправильная организация процесса освоения двигательного действия.

Для повышения эффективности освоения двигательных действий и профилактики ошибок большое значение имеет правильный регламент их выполнения. Основными параметрами такого регламента являются число повторений и интервалы отдыха между ними. Их конкретные характеристики могут быть самыми различными, так как определяются многими факторами (сложностью движений, этапом освоения, индивидуальными возможностями занимающегося и т.п.). Вместе с тем во всех случаях следует помнить и соблюдать следующие общие правила:

число повторений нового действия определяется возможностями занимающегося улучшать движение при каждой новой попытке;

повторное выполнение с одними и теми же ошибками является сигналом к перерыву для отдыха и обдумыванию своих действий;

интервалы отдыха должны обеспечивать оптимальную готовность к выполнению очередной попытки - как физическую, так и психическую;

продолжать освоение движений при сильном утомлении нецелесообразно и даже вредно;

перерывы между занятиями должны быть как можно короче, чтобы не потерять уже приобретенные умения и навыки.