Метод гармонической линеаризации. Метод гармонической линеаризации: Методические указания к лабораторной работе Анализ нелинейной системы методом гармонической линеаризации

Проиллюстрируем вычисление коэффициентов гармонической линеаризации на нескольких примерах: сначала для симметричных колебаний, а затем для несимметричных. Предварительно заметим, что если нечетно-симметричная нелинейность F(x) однозначна, то, согласно (4.11) и (4.10), получаем

причем при вычислении q (4.11) можно ограничиться интегрированием на четверти периода, учетверив результат, а именно

Для петлевой нелинейности F(x) (нечетно-симметричной) будет иметь место полное выражение (4.10)

причем можно пользоваться формулами

т. е. удвоением результата интегрирования на полупериоде.

Пример 1. Исследуем кубическую нелинейность (рис. 4.4, я):

Зависимость q(a) показана на рис. 4.4, б. Из рис. 4.4, а видно, что при заданной амплитуде я прямая q(a)x осредняет криволинейную зависимость F(x) на данном

участке -а£ х £. а. Естественно, что крутизна q(a) на­клона этой осредняющей прямой q{a}x увеличивается с увеличением амплитуды а (для кубической характе­ристики это увеличение происходит по квадратичному закону).

Пример 2. Исследуем петлевую релейную характе­ристику (рис. 4.5, а). На рис. 4.5,6 представлена подын­тегральная функция F(a sin y) для формул (4.21). Переключение реле имеет место при ½х ½= b, Поэтому в момент переключения величина y1 определяется выражением sin y1= b/а. По формулам (4.21) получаем (для a ³b)

На рис. 4.5, б изображены графики q(а) и q"(a). Первый из них показывает изменение крутизны наклона осредняющей прямой q(а )x с изменением а (см. рис. 4.5, а). Естественно, что q(a )à0 при аॠпри, так как сигнал на выходе остается постоянным (F(x )=c)при любом неограниченном увеличении входного сигна­ла х. Из физических соображений ясно также, почему q" <0. Это коэффициент при производной в формуле (4.20). Положительный знак давал бы опережение сиг­нала на выходе, в то время как гистерезисная петля дает запаздывание. Поэтому естественно, что q" < 0. Абсолют­ное значение q" уменьшается с увеличением амплиту­ды a, так как ясно, что петля будет занимать тем мень­шую часть «рабочего участка» характеристики F(x ), чем больше амплитуда колебаний переменной х.

Амплитудно-фазовая характеристика такой нелиней­ности (рис. 4.5, а), согласно (4.13). представляется в виде

причем амплитуда и фаза первой гармоники на выхода нелинейности имеют соответственно вид

где q и q" определены выше (рис. 4.5, б). Следовательно, гармоническая линеаризация переводит нелинейное ко­ординатное запаздывание (гистерезисную петлю) в экви­валентное запаздывание по фазе, характерное для ли­нейных систем, по с существенным отличием-зависи­мостью фазового сдвига от амплитуды входных колеба­ний, чего нет в линейных системах.



Пример 3. Исследуем однозначные релейные ха­рактеристики (рис. 4.6, а, в). Аналогично предыдущему получаем соответственно

что изображено на рис. 4.6, б, а.

Пример 4. Исследуем характеристику с зоной нечувствительности, линейным участком и насыщением (рис. 4.7, а). Здесь q" = 0, а коэффициент q (a ) имеет два варианта значений в соответствии срис. 4.7, б, где для них построена F (a sin y):

1) при b1 £ а £ b2, согласно (4.19), имеем

что сучетом соотношения a sin y1 = b 1 дает

2) при а ³ b2

что с учетом соотношения a sin y2 = b2 даёт

Графически результат представлен на рис. 4.7, а.

Пример 5. Как частные случаи, соответствующие коэффициенты q(a) для двух характеристик (рис. 4,8, а, б) равны

что изображено графически на рис. 4.8, б, г. При этом для характеристики с насыщением (рис. 4.8, а) имеем q= k при 0 £ a £ b.

Покажем теперь примеры вычисления коэффициен­тов гармонической линеаризации для несимметричных колебаний при тех же нелинейностях.

Пример 6. Для случая кубической нелинейности F(x ) = kx 3 по формуле (4.16) имеем

а по формулам (4.17)

Пример 7. Для петлевой релейной характеристики (рис. 4.5, а) по тем же формулам имеем

Пример 8. Для характеристики с зоной нечувстви­тельности (рис. 4.1:1) будут иметь место те же выраже­ния и q. Графики их представлены на рис. 4.9, а, б. При этом q" == 0. Для идеальной же релейной характе­ристики (рис. 4.10) получаем

что изображено на рис. 4.10, а и б.

Пример 9. Для характеристики с линейным участ­ком ц насыщением (рис.4.11,а) при а ³ b+½x 0 ½ имеем

Эти зависимости представлены в виде графиков на рис. 4.11, б, в.

Пример 10. Для несимметричной характеристики

(рис. 4. 12, а) по формуле (4.l6) находим

а по формулам (4.17)

Результаты изображены графически на рис. 4.12, б и в.

Полученные в этих примерах выражения и графики коэффициентов гармонической линеаризации будут ис­пользованы ниже при решении задач по исследованию

автоколебаний, вынужденных колебаний и процессов управления.

Базируясь на свойстве фильтра линейной части системы (лекция 12), ищем периодическое решение нелинейной системы (рис. 4.21) на входе нелинейного элемента приближенно в виде

х = a sin wt (4.50)

с неизвестными а и w. Задана форма нелинейности у= F(x ) и передаточная функция линейной части

Производится гармоническая линеаризация нелинейности

что приводит к передаточной функции

Амплитудно-фазовая частотная характеристика разомкнутой цепи системы получает вид

Периодическое решение линеаризованной системы (4.50) получается при наличии в характеристическом уравнении замкнутой системы пары чисто мнимых корней.

А это по критерию Найквиста соответствует прохождению W (j w) через точку -1. Следо­вательно, периодическое реше­ние (4.50) определяется равен­ством

Уравнение (4.51) определяет искомые амплитуду а и частоту w периодического решения. Это уравнение ре­шается графически следующим образом. На комплексной плоскости (U, V) вычерчивается амплитудно-фазовая частотная характеристика линейной части Wл(j w)(рис. 4.22), а также обратная амплитудно-фазовая ха­рактеристика нелинейности с обратным знаком -1/ Wн(a ). Точка В их пересечения (рис. 4.22) и определяет величи­ны а и w, причем значение а отсчитывается по кривой -1/ Wн (a), а значение w - по кривой Wл (jw).

Вместо этого можно пользоваться двумя скалярными уравнениями, вытекающими из (4.51) и (4.52):

которые также определяют две искомые величины а и w.

Последними двумя уравнениями удобнее пользоваться в логарифмическом масштабе, привлекая логарифмические­

частотные характери­стики линейной части. Тогда вместо (4.53) и (4.54) будем иметь следующие два урав­нения:

На рис. 4.23 слева изображены графики левых частей уравнений (4.55) и (4.56), а справа-правых частей этих уравнений. При этом по оси абсцисс слева часто­та w откладывается, как обычно, в логарифмическом масштабе, а справа-амплитуда а в натуральном масш­табе. Решением этих уравнений будут такие значения а и w, чтобы при них одновременно соблюдались оба ра­венства: (4.55) и (4.56). Такое решение показано на рис. 4.23 тонкими линиями в виде прямоугольника.

Очевидно, что сразу угадать это решение не удастся. Поэтому делаются попытки, показанные штриховыми линиями. Последние точки этих пробных прямоугольников М1 и М2 не попадают на фазовую характеристику нели­нейности. По если они расположены по обе стороны ха­рактеристики, как на рис. 4.23, то решение находится интерполяцией - путем проведения прямой ММ1.

Нахождение периодического решения.упрощается а случае однозначной нелинейности F(х ). Тогда q" = 0 и уравнения (4.55) и (4.56) принимают вид

Решение показано на рис. 4.24.

Рис. 4.24.

После определения периодического решения надо ис­следовать его устойчивость. Как уже говорилось, перио­дическое решение имеет место в случае, когда амплитудно-фазовая характеристика разомкнутой цепи

проходит через точку -1. Дадим амплитуде отклонение Dа . Система будет возвращаться к периодическому ре­шению, если при Dа > 0 колебания затухают, а при Dа < 0 - расходятся. Следовательно, при Dа > 0 харак­теристика W(jw, а ) дол­жна деформироваться (рис. 4.25) так, чтобы при Dа > 0 критерий устойчивости Найквиста соблюдался, а при Dа < 0 - нарушался.

Итак требуется, что­бы на данной часто­те w было

Отсюда следует, что на рис. 4.22 положительный отсчет амплитуды а вдоль кривой -1/Wн (а ) должен быть на­правлен изнутри вовне через кривую Wл (jw), как там и показано стрелкой. В противном случае периодическое решение неустойчиво.

Рассмотрим примеры.

Пусть в следящей системе (рис. 4.13, а) усилитель имеет релейную характеристику (рис. 4.17, а). Па рис. 4.17, б для нее показан график коэффициента гар­монической линеаризации q(а ), причем q’(а ) =0. Для определения периодического решения частотным спосо­бом, согласно рис. 4.22, надо исследовать выражение

Из формулы (4.24) получаем для данной нелинейности

График этой функции изображен па рис. 4.26.

Передаточная функция линейной части имеет вид

Амплитудно-фазовая характеристика для нее приведена на рис. 4.27. Функция же -1/ Wн (а ), являясь в данном слу­чае вещественной (рис. 4.26), укладывается вся на отрица­тельной части вещественной оси (рис. 4.27). При этом на участке изменения амплитуды b £ a £ b амплитуда отсчи­тывается слева извне внутрь кривой Wл(jw), а на участке а > b - в обратную сторону. Следовательно, первая точка пересечения (а 1) дает неустой­чивое периодическое решение, а вторая (а 2) - устойчивое (ав­токолебания). Это согласуется с прежним решением (пример 2 лекция 15, 16).

Рассмотрим также случай петлевой характеристики реле (рис. 4.28, а) в той же следящей системе (рис. 4.13, а). Амплитудно-фазовая частотная характе­ристика линейной части та же (рис. 4.28, б). Выражение же для кривой –1/Wн(а ), согласно (4.52) и (4.23), при­нимает вид

Это-прямая, параллельная оси абсцисс (рис. 4.28, б ), с отсчетом амплитуды а справа налево. Пересечение даст устойчивое периодическое решение (автоколебания). Чтобы получить графики зависимости амплитуды и частоты

от k л, представленные на рис. 4.20, нужно на рис. 4.28 построить серию кривых Wл(jw) для каждой величины k л и найти в их точках пересечения с прямой –1/Wн(а ) соответствующие значения а и w.

Метод гармонической линеаризации (гармонического баланса ) позволяет определить условия существования и параметры возможных автоколебаний в нелинейных САУ. Автоколебания определяются предельными циклами в фазовом пространстве систем. Предельные циклы разделяют пространство (в общем случае - многомерное ) на области затухающих и расходящихся процессов. В результате расчета параметров автоколебаний можно сделать заключение о их допустимости для данной системы или о необходимости изменения параметров системы.

Метод позволяет:

Определить условия устойчивости нелинейной системы;

Найти частоту и амплитуду свободных колебаний системы;

Синтезировать корректирующие цепи, для обеспечения требуемых параметров автоколебаний;

Исследовать вынужденные колебания и оценивать качество переходных процессов в нелинейных САУ.

Условия применимости метода гармонической линеаризации.

1) При использовании метода предполагается, что линейная часть системы устойчива или нейтральна.

2) Сигнал на входе нелинейного звена близок по форме к гармоническому сигналу. Это положение требует пояснений.

На рис.1 представлены структурные схемы нелинейной САУ. Схема состоит из последовательно соединенных звеньев: нелинейного звена y=F(x) и линейно-

го, которое описывается дифференциальным уравнением

При y = F(g - x) = g - x получим уравнение движения линейной системы.

Рассмотрим свободное движение, т.е. при g(t) º 0. Тогда,

В случае, когда в системе существуют автоколебания, свободное движение системы является периодическим. Непериодическое движение с течением времени оканчивается остановкой системы к некотором конечном положении (обычно, на специально предусмотренном ограничителе).

При любой форме периодического сигнала на входе нелинейного элемента сигнал на его выходе будет содержать кроме основной частоты высшие гармоники. Предположение о том, что сигнал на входе нелинейной части системы можно считать гармоническим, т.е., что

x(t)@ a×sin(wt),

где w=1/T, T - период свободных колебаний системы, равносильно предположению о том, что линейная часть системы эффективно фильтрует высшие гармоники сигнала y(t) = F(x (t)).

В общем случае при действии на входе нелинейного элемента гармонического сигнала x(t) сигнал на выходе может быть преобразован по Фурье:

Коэффициенты ряда Фурье

Для упрощения выкладок положим C 0 =0, т.е., что функция F(x) симметрична относительно начала координат. Такое ограничение не обязательно и сделано анализа. Появление коэффициентов C k ¹ 0 означает, что, в общем случае нелинейное преобразование сигнала сопровождается и фазовыми сдвигами преобразуемого сигнала. В частности, это имеет место в нелинейностях с неоднозначными характеристиками (с различного рода гистерезисными петлями), причем как запаздывание так и, в некоторых случаях, опережение по фазе .



Предположение об эффективной фильтрации означает, что амплитуды высших гармоник на выходе линейной части системы малы, то есть

Выполнению этого условия способствует то, что во многих случаях амплитуды гармоник уже непосредственно на выходе нелинейности оказываются существенно меньше амплитуды первой гармоники. Например, на выходе идеального реле при гармоническом сигнале на входе

y(t)=F(с×sin(wt))=a×sign(sin(wt))

четные гармоники отсутствуют, а амплитуда третьей гармоники в три раза меньше амплитуды первой гармоники

Сделаем оценку степени подавления высших гармоник сигнала в линейной части САУ. Для этого сделаем ряд предположений.

1) Частота свободных колебаний САУ приблизительно равна частоте среза ее линейной части. Отметим, что частота свободных колебаний нелинейной САУ может существенно отличаться от частоты свободных колебаний линейной системы так, что это допущение не всегда корректно .

2) Показатель колебательности САУ примем равным M=1.1.

3) ЛАХ в окрестностях частоты среза (w с) имеет наклон -20 дБ/дек. Границы этого участка ЛАХ связаны с показателем колебательности соотношениями

4) Частота w max является сопрягающей с участком ЛФХ, так что при w > w max наклон ЛАХ не менее минус 40 дБ/дек.

5) Нелинейность - идеальное реле с характеристикой y = sign(x) так, что на ее выходе нелинейности будут присутствовать только нечетные гармоники.

Частоты третьей гармоники w 3 = 3w c , пятой w 5 = 5w с,

lgw 3 = 0.48+lgw c ,

lgw 5 = 0.7+lgw c .

Частота w max = 1.91w с, lgw max = 0.28+lgw c . Сопрягающая частота отстоит от частоты среза на 0.28 декады.

Уменьшение амплитуд высших гармоник сигнала при их прохождении через линейную часть системы составит для третьей гармоники

L 3 = -0.28×20-(0.48-0.28)×40 = -13.6 дБ, то есть в 4.8 раза,

для пятой - L 5 = -0.28×20-(0.7-0.28)×40 = -22.4 дБ, то есть в 13 раз.

Следовательно, сигнал на выходе линейной части окажется близким к гармоническому

Это эквивалентно предположению, что система является низкочастотным фильтром.

При подаче на вход линейной системы гармонического сигнала

на выходе системы также устанавливается гармонический сигнал, но с другой амплитудой и смещенный по фазе по отношению к входному. Если же синусоидальный сигнал подать на вход нелинейного элемента, то на его выходе формируются периодические колебания, но по форме существенно отличающиеся от синусоидальных. В качестве при­мера на рис. 8.17 показан характер изменения выходной переменной нелинейного элемента с релейной ха­рактеристикой (8.14) при поступлении на его вход синусоидальных колебаний (8.18).

Разлагая периодический сигнал на выходе нелинейного элемента в ряд Фурье, представляем в виде суммы постоянной составляющей и бесконечного множества гармонических составляющих:

, (8.19)

где постоянные коэффи­циенты ряда Фурье; – частота колебаний пер­вой гармоники (основная частота), равная частоте вход­ных синусоидальных колебаний;Т – период колебания первой гармоники, равный периоду входных синусоидальных колебаний.

Выходной сигнал нелинейного элемента поступает на вход линейной части САУ (см. рис. 8.1), которая, как правило, обладает существенной инерционностью. При этом высокочастотные составляющие сигнала (8.19) практически не проходят на выход системы, т.е. линейная часть является фильтром по отношению к высокочастотным гармоническим состав­ляющим. В связи с этим, а также учитывая, что ампли­туды гармонических составляющих в уменьшаются с ростом часто­ты гармоники, для приближенной оценки выходной величины нелинейного элемента, в большом числе случаев достаточно учитывать только первую гармониче­скую составляющую в .

Следовательно, при отсутствии постоянной составляю­щей в выходных колебаниях выражение (8.19) прибли­женно можно записать в виде:

Выражая из формулы (8.20) функцию , а из производной – функцию , преобразуем выражение (8.20) следующим образом:

. (8.21)

Таким образом, нелинейная зависимость выходной величины от входной в нелинейном элементе приближен­но заменяется линейной зависимостью, описываемой вы­ражением (8.21).

Выполнив в вы­ражении (8.21) преобразование Лапласа, получим:

Как и для непрерывных звеньев введем в рассмотрение переда­точную функцию нелинейного гармонически линеаризо­ванного элемента , как отношение изображения выходной ве­личины к изображению входной величины:

. (8.22)

Таблица 8.1

Коэффициенты гармонической линеаризации типовых нелинейностей

Статическая характеристика нелинейного элемента

Линейная характеристика с зоной нечувствительности

Линейная характеристика с ограничением

Линейная характеристика с зоной нечувствительности и ограничением

Характеристика «люфт»

Идеальная релейная характеристика

Однозначная релейная характеристика с зоной нечувствительности

Неоднозначная релейная характеристика с зоной нечувствительности

Кубическая парабола:

Характеристика «петля гистерезиса»

Передаточная функция нелинейного эле­мента имеет существенное отличие от передаточной функ­ции линейной системы , заключающееся в том, что зависит от амплитуды и частоты входного сигнала.

Выражение (8.22) запишем в виде:

q (A ) + q 1 (A ), (8.23)

где q(A) ,q 1 (A) – коэффициенты гармонической линеаризации, определяемые как отношения коэффициентов ряда Фурье для пер­вой гармоники выходных колебаний к амплитуде вход­ных колебаний:

q (A ) = q 1 (A ) = . (8.24)

Заменяя в выражении (8.23) р на , получим выражение длякомплексного коэффициента передачи нелинейного элемента :

q (A ) +j q 1 (A ), (8.25)

являющегося аналогом АФХ для линейного звена.

В качестве примера определим выражение для комплексного коэффициента передачи нелинейного элемента с релейной статической характеристикой (8.14). Коэффициенты ряда Фурье A 1 и B 1 для указанной нелинейности равны:

B 1 .

Очевидно, что коэффициент B 1 будет равен нулю для любого нелинейного элемента с нечетно-симметричной статической нелинейностью.

где - передаточная функция линейной части си­стемы; - передаточная функция нелинейного элемента после его линеаризации.

Если , то выражение (8.26) можно записать в виде:

Заменяя в выражении (8.27) р на , по­лучим комплексное выражение, в котором необходимо выделить вещественную и мнимую части:

[ q (A ) +j q 1 (A ) ] . (8.28)

При этом условие возникновения периодических колебаний в системе с частотой и амплитудой запишем:

(8.29)

Если решения системы (8.29) комплексные или отрицательные, режим автоколебаний в системе невозможен. Наличие положительных вещественных решений для и свидетельствует о наличии в системе автоколебаний, которые необходимо проверить на устойчивость.

В качестве примера найдем условия возникновения автоколеба­ний в САУ, если передаточная функция ее линейной части равна:

(8.30)

и нелинейным элементом типа «петля гистерезиса».

Передаточная функция гармонически линеаризованного нелинейного элемента (см. табл. 8.1) имеет вид:

. (8.31)

Подставляя выражения (8.30) и (8.31) в выражение (8.26) и заменяя р на , найдем выражение для :

Отсюда в соответствии с выражением (8.29) получаем следующие условия возникновения автоколебаний в системе:

Решение системы уравнений (8.29) обычно затруднительно, так как ко­эффициенты гармонической линеаризации имеют слож­ную зависимость от амплитуды входного сигнала. Кроме того, помимо определения амплитуды и частоты , необходимо оценить устойчивость автоколебаний в системе.

Условия возникновения автоколебаний в нелинейной системе и параметры предельных циклов можно исследо­вать, используя частотные критерии устойчивости, например, критерий устойчи­вости Найквиста. Согласно этому критерию при наличии ав токолебанийамплитудно-фазовая характеристика разомкнутой гармонически линеаризованной системы, равная

проходит через точку (-1, j0). Следовательно, для и справедливо равенство:

. (8.32)

Решение уравнения (8.32) относительно частоты и амплитуды автоколебаний можно получить графически. Для этого на комплексной плоскости необходимо, изменяя частоту от 0 до , построить годограф АФХ линейной части системы и, изменяя амплитудуА от 0 до , построить годограф обратной ха­рактеристики нелинейной части , взятый с знаком «минус». Если эти годографы не пересекаются, то режим автоколебаний в исследуемой системе не существует (рис. 8.18, б).

При пересечении годографов (рис. 8.18, а) в системе возникают автоколебания, частота и амплитуда которых опреде­ляются значениями и в точке пересечения..

Если и - пересекаются в нескольких точках (рис. 8.18, а), то это свидетельствует о наличии в системе нескольких предельных циклов. При этом колебания в системе могут быть устойчивы­ми и неустойчивыми.

Устойчивость автоколебательного режима оценивается следующим образом. Режим автоколебаний устойчив, если точка на годографе нелинейной части , соответствующая амплитуде большей по сравнению со значением в точке пересечения годографов, не охватывается годографом частотной характеристики линейной части системы. В противном случае автоколебательный режим неустойчив.

На рис. 8.18, а годографы пересекаются в точках 1 и 2. Точка 1 определяет неустойчивый режим автоколебаний, так как точка годографа , соответствующая увеличенной амплитуде, охватывается годографом частотной характеристики линейной части системы. Точке 2 соответствует устойчивый режим автоколебаний, амплитуда которых определяется по годографу а частота – по годографу .

В качестве примера оценим устойчивость автоколебаний в двух нелинейных системах. Будем полагать, что передаточные функции линейных частей этих систем совпадают и равны:

,

но входящие в них их нелинейные элементы различны. Пусть в первую систему включен нелинейный элемент «идеальное реле», описываемый системой (8.14), а во вторую – нелинейный элемент со статической характеристикой «кубическая парабола». Воспользовавшись данными таблицы 8.1, получим:

На рис. 8.19 изображены годографы этих систем совместно с годографом АФХ линейной части системы . На основании изложенного можно утверждать, что в первой системе возникают устойчивые автоколебания с частотой и амплитудой , а во второй системе автоколебания неустойчивые.

Идея метода гармонической линеаризации принадлежит Н.М. Крылову и Н.Н. Боголюбову и базируется на замене нелинейного элемента системы линейным звеном, параметры которого определяются при гармоническом входном воздействии из условия равенства амплитуд первых гармоник на выходе нелинейного элемента и эквивалентного ему линейного звена. Данный метод может быть использован в том случае, когда линейная часть системы является низкочастотным фильтром, т.е. отфильтровывает все возникающие на выходе нелинейного элемента гармонические составляющие, кроме первой гармоники.

Коэффициенты гармонической линеаризации и эквивалентные комплексные коэффициенты передачи нелинейных элементов . В нелинейной системе (рис. 2.1) параметры линейной части и нелинейного элемента выбирают таким образом, чтобы существовали симметричные периодические колебания с частотой w.

В основе метода гармонической линеаризации нелинейностей (рис. 2.10), описываемых уравнением

y н = F(x), (2.17)

лежит предположение, что на вход нелинейного элемента подается гармоническое воздействие с частотой w и амплитудой a , т.е.

x = a sin y, где y = wt, (2.18)

а из всего спектра выходного сигнала выделяется только первая гармоника

y н 1 = a н 1 sin(y + y н 1), (2.19)

где a н 1 - амплитуда а y н 1 - фазовый сдвиг;

при этом высшие гармоники отбрасываются и устанавливается связь между первой гармоникой выходного сигнала и входным гармоническим воздействием нелинейного элемента.

Рис. 2.10. Характеристики нелинейного элемента

В случае нечувствительности нелинейной системы к высшим гармоникам нелинейный элемент может быть в первом приближении заменен некоторым элементом с эквивалентным коэффициентом передачи, который определяет первую гармонику периодических колебаний на выходе в зависимости от частоты и амплитуды синусоидальных колебаний на входе.

Для нелинейных элементов с характеристикой (2.17) в результате разложения периодической функции F(x) в ряд Фурье при синусоидальных колебаниях на входе (2.18) получим выражение для первой гармоники сигнала на выходе

y н 1 = b 1F siny + a 1F cosy, (2.20)

где b 1F , a 1F - коэффициенты разложения в ряд Фурье, определяющие амплитуды соответственно синфазной и квадратурной составляющих первой гармоники, которые определяются по формулам:

px = a w cos y, где p = d/dt,

то связь между первой гармоникой периодических колебаний на выходе нелинейного элемента и синусоидальными колебаниями на его входе можно записать в виде

y н 1 = x, (2.21)

где q = b 1F /a , q¢ = a 1F /a .

Последнее уравнение называется уравнением гармонической линеаризации , а коэффициенты q и q¢ - коэффициентами гармонической линеаризации .


Таким образом, нелинейный элемент при воздействии гармонического сигнала с точностью до высших гармоник описывается уравнением (2.21), которое является линейным. Это уравнение нелинейного элемента отличается от уравнения линейного звена тем, что его коэффициенты q и q¢ изменяются при изменении амплитуды a и частоты w колебаний на входе. Именно в этом заключается принципиальное отличие гармонической линеаризации от обычной, коэффициенты которой не зависят от входного сигнала, а определяются только видом характеристики нелинейного элемента.

Для различных видов нелинейных характеристик коэффициенты гармонической линеаризации сведены в таблицу . В общем случае коэффициенты гармонической линеаризации q(a , w) и q¢(a , w) зависят от амплитуды a и частоты w колебаний на входе нелинейного элемента. Однако, для статических нелинейностей эти коэффициенты q(a ) и q¢(a ) являются функцией только амплитуды a входного гармонического сигнала, а для статических однозначных нелинейностей коэффициент q¢(a ) = 0.

Подвергнув уравнение (2.21) преобразованию по Лапласу при нулевых начальных условиях с последующей заменой оператора s на jw (s = jw), получим эквивалентный комплексный коэффициент передачи нелинейного элемента

W Э (jw, a ) = q + jq¢ = A Э (w, a ) e j y э (w , a ) , (2.22)

где модуль и аргумент эквивалентного комплексного коэффициента передачи связаны с коэффициентами гармонической линеаризации выражениями

A Э (w, a ) = mod W Э (jw, a ) =

y Э (w, a ) = arg W Э (jw, A) = arctg.

Эквивалентный комплексный коэффициент передачи нелинейного элемента позволяет определить амплитуду и фазовый сдвиг первой гармоники (2.19) на выходе нелинейного элемента при гармоническом воздействии (2.18) на его входе, т.е.

a н 1 = a ´A Э (w, a ); y н 1 = y Э (w, a ).

Исследование симметричных периодических режимов в нелинейных системах. При исследовании нелинейных систем на основе метода гармонической линеаризации в первую очередь решают вопрос о существовании и устойчивости периодических режимов. Если периодический режим устойчив, то в системе существуют автоколебания с частотой w 0 и амплитудой a 0 .

Рассмотрим нелинейную систему (рис. 2.5), включающую в себя линейную часть с передаточной функцией

и нелинейный элемент с эквивалентным комплексным коэффициентом передачи

W Э (jw, a ) = q(w, a ) + jq¢(w, a ) = A Э (w, a ) e j y э (w , a ) . (2.24)

Принимая во внимание выражение (2.21), можно записать уравнение нелинейной системы

{A(p) + B(p)´}x = 0. (2.25)

Если в замкнутой нелинейной системе возникают автоколебания

x = a 0 sin w 0 t

с постоянной амплитудой и частотой, то коэффициенты гармонической линеаризации оказываются постоянными, а вся система стационарной. Для оценки возможности возникновения автоколебаний в нелинейной системе методом гармонической линеаризации необходимо найти условия границы устойчивости, как это делалась при анализе устойчивости линейных систем. Периодическое решение существует, если при a = a 0 и w = w 0 характеристическое уравнение гармонически линеаризованной системы

A(p) + B(p)´ = 0 (2.26)

имеет пару мнимых корней l i = jw 0 и l i +1 = -jw 0 . Устойчивость решения необходимо оценить дополнительно.

В зависимости от методов решения характеристического уравнения различают методы исследования нелинейных систем.

Аналитический метод . Для оценки возможности возникновения в нелинейной системе автоколебаний в гармонически линеаризованный характеристический полином системы вместо p подставляют jw

D(jw, a ) = A(jw) + B(jw)´. (2.27)

В результате получают уравнение D(jw, a ) = 0, коэффициенты которого зависят от амплитуды и частоты предполагаемого автоколебательного режима. Выделив вещественную и мнимую части

Re D(jw, a ) = X(w, a );

Im D(jw, a ) = Y(w, a ),

получим уравнение

X(w, a ) + jY(w, a ) = 0. (2.28)

Если при действительных значениях a 0 и w 0 выражение (2.28) удовлетворяется, то в системе возможен автоколебательный режим, параметры которого рассчитываются по следующей системе уравнений:

Из выражений (2.29) можно найти зависимость амплитуды и частоты автоколебаний от параметров системы, например, от коэффициента передачи k линейной части системы. Для этого необходимо в уравнениях (2.29) коэффициент передачи k считать переменной величиной, т.е. эти уравнения записать в виде:

По графикам a 0 = f(k), w 0 = f(k) можно выбрать коэффициент передачи k, при котором амплитуда и частота возможных автоколебаний имеет допустимые значения или вообще отсутствует.

Частотный метод . В соответствии с критерием устойчивости Найквиста незатухающие колебания в линейной системе возникают в том случае, когда амплитудно-фазовая характеристика разомкнутой системы проходит через точку с координатами [-1, j0]. Данное условие является также условием существования автоколебаний в гармонически линеаризованный нелинейной системе, т.е.

W н (jw, a ) = -1. (2.31)

Так как линейная и нелинейная части системы соединены последовательно, то частотная характеристика разомкнутой нелинейной системы имеет вид

W н (jw, a ) = W лч (jw)´W Э (jw, a ). (2.32)

Тогда в случае статической характеристики нелинейного элемента условие (2.31) принимает вид

W лч (jw) = - . (2.33)

Решение уравнения (2.33) относительно частоты и амплитуды автоколебаний можно получить графически как точку пересечения годографа частотной характеристики линейной части системы W лч (jw) и годографа обратной характеристики нелинейной части , взятой с обратным знаком (рис. 2.11). Если эти годографы не пересекаются, то режим автоколебаний в исследуемой системе не существует.

Рис. 2.11. Годографы линейной и нелинейной частей системы

Для устойчивости автоколебательного режима с частотой w 0 и амплитудой a 0 требуется, чтобы точка на годографе нелинейной части - , соответствующая увеличенной амплитуде a 0 +Da по сравнению со значением в точке пересечения годографов, не охватывалась годографом частотной характеристики линейной части системы и охватывалась точка, соответствующая уменьшенной амплитуде a 0 -Da .

На рис. 2.11 дан пример расположения годографов для случая, когда в нелинейной системе существуют устойчивые автоколебания, так как a 3 < a 0 < a 4 .

Исследование по логарифмическим частотным характеристикам .

При исследовании нелинейных систем по логарифмическим частотным характеристикам условие (2.31) переписывают отдельно для модуля и аргумента эквивалентного комплексного коэффициента передачи разомкнутой нелинейной системы

mod W лч (jw)W э (jw, a ) = 1;

arg W лч (jw)W э (jw, a ) = - (2k+1)p, при k=0, 1, 2, ...

с последующим переходом к логарифмическим амплитудной и фазовой характеристикам

L лч (w) + L э (w, a ) = 0; (2.34)

y лч (w) + y э (w, a ) = - (2k+1)p, при k=0, 1, 2, ... (2.35)

Условия (2.34) и (2.35) позволяют определить амплитуду a 0 и частоту w 0 периодического решения уравнения (2.25) по логарифмическим характеристикам линейной части системы L лч (w), y лч (w) и нелинейного элемента L э (w, a ), y э (w, a ).

Автоколебания с частотой w 0 и амплитудой a 0 будут существовать в нелинейной системе, если периодическое решение уравнения (2.25) устойчиво. Приближенный метод исследования устойчивости периодического решения заключается в том, что исследуется поведение системы при частоте w = w 0 и значениях амплитуды a = a 0 + Da и a = a 0 - Da , где Da > 0 - малое приращение амплитуды. При исследовании устойчивости периодического решения при a 0 + Da и a 0 - Da по логарифмическим характеристикам пользуются критерием устойчивости Найквиста.

В нелинейных системах с однозначными статическими характеристиками нелинейного элемента коэффициент гармонической линеаризации q¢(a ) равен нулю, а следовательно, равен нулю и фазовый сдвиг y э (a ), вносимый элементом. В этом случае периодическое решение уравнения системы

x = 0 (2.36)

существует, если выполняются условия:

L лч (w) = - L э (a ); (2.37)

y лч (w) = - (2k+1)p, при k=0, 1, 2, ... (2.38)

Уравнение (2.38) позволяет определить частоту w = w 0 периодического решения, а уравнение (2.37) - его амплитуду a = a 0 .

При сравнительно простой линейной части решения этих уравнений могут быть получены аналитически. Однако в большинстве случаев их целесообразно решать графически (рис. 2.12).

При исследовании устойчивости периодического решения уравнения (2.36), т.е. при определении существования автоколебаний в нелинейной системе с однозначной нелинейной статической характеристикой пользуются критерием Найквиста : периодическое решение с частотой w = w 0 и амплитудой a = a 0 устойчиво, если при изменении частоты от нуля до бесконечности и положительном приращении амплитуды Da > 0 разность между числом положительных (сверху вниз) и отрицательных (снизу вверх) переходов фазовой характеристики линейной части системы y лч (w) через линию -p равна нулю в диапазоне частот, где L лч (w)³-L э (w 0 ,a 0 +Da ), и не равна нулю в диапазоне частот, где L лч (w)³-L э (w 0 ,a 0 -Da ).

На рис. 2.12 показан пример определения периодических решений в нелинейной системе с ограничением. В такой системе имеются три периодических решения с частотами w 01 , w 02 и w 03 , определяемыми в точках пересечения фазовой характеристики y лч (w) с линией -180 0 . Амплитуды периодического решения a 01 , a 02 и a 03 определяются из условия (2.37) по логарифмическим амплитудным характеристикам нелинейного элемента -L э (w 01 , a ), -L э (w 02 , a ) и -L э (w 03 , a ).

Рис. 2.12. Логарифмические амплитудные и фазовая характеристики

Из трех решений, определенных на рис. 2.12, устойчивы два. Решение с частотой w = w 01 и амплитудой a = a 01 устойчиво, так как в диапазоне частот 1, где L лч (w)³-L э (w 01 ,a 01 +Da ), фазовая характеристика y лч (w) не пересекает линию -180 0 , а в диапазоне частот 2, где L лч (w)³-L э (w 01 ,a 01 -Da ), фазовая характеристика y лч (w) один раз пересекает линию -180 0 . Решение с частотой w = w 02 и амплитудой a = a 02 неустойчиво, так как в диапазоне частот, где L лч (w)³-L э (w 02 ,a 02 +Da ), фазовая характеристика y лч (w) один раз пересекает линию -180 0 . Высокочастотное периодическое решение с частотой w = w 03 и амплитудой a = a 03 устойчиво, так как в диапазоне частот, где L лч (w)³-L э (w 03 ,a 03 +Da ), имеется один положительный и один отрицательный переход фазовой характеристики y лч (w) через линию -180 0 , а в диапазоне частот, где L лч (w)³-L э (w 03 ,a 03 -Da ), имеются два положительных и один отрицательный переход фазовой характеристики y лч (w) через линию -180 0 .

В рассмотренной системе при малых по величине возмущениях установятся высокочастотные автоколебания с частотой w 03 и амплитудой a 03 , а при больших по величине возмущениях - низкочастотные автоколебания с частотой w 01 и амплитудой a 01 .

Пример. Исследовать автоколебательные режимы в нелинейной системе, линейная часть которой имеет следующую передаточную функцию

где k=200 c -1 ; T 1 =1.5 c; T 2 =0.015 c,

а в качестве нелинейного элемента используется реле с зоной нечувствительности (рис. 2.4,б) при с=10 В, b=2 В.

Р е ш е н и е. По таблице для реле с зоной нечувствительности находим коэффициенты гармонической линеаризации:

При a ³ b, q¢(a ) = 0.

При построении характеристик нелинейного элемента целесообразно использовать относительное по сравнению с зоной нечувствительности значение амплитуды входного гармонического воздействия m = a /b. Перепишем выражение коэффициента гармонической линеаризации в виде

где - коэффициент передачи реле;

Относительная амплитуда.

Коэффициент передачи реле k н отнесем к линейной части системы и получим нормированные коэффициенты гармонической линеаризации

и нормированную логарифмическую амплитудную характеристику релейного элемента с обратным знаком

Если m ® 1, то -L э (m) ® ¥; а при m >> 1 -L э (m) = 20 lg m. Таким образом, асимптотами нормированной логарифмической амплитудной характеристики с обратным знаком являются вертикальная прямая и прямая с наклоном +20дб/дек, которые проходят через точку с координатами L = 0, m = 1 (рис. 2.13).

Рис. 2.13. Определение периодического решения в релейной системе

с зоной нечувствительности

a 0 = b´m 1 = = 58 В.


Для решения вопроса о существовании автоколебаний в соответствии с нормированной логарифмической амплитудной характеристикой с обратным знаком нелинейного элемента и передаточной функцией линейной части системы

на рис. 2.13 построены логарифмические характеристики L лч (w), -L э (m) и y лч (w).

Частота периодического решения w 0 = 4.3 c -1 определяется в точке пересечения фазовой характеристики y лч (w) и линии -180 0 . Амплитуды периодических решений m 1 = 29 и m 2 = 1.08 находятся по характеристикам L лч (w) и -L э (m). Периодическое решение с малой амплитудой m 2 неустойчиво, а периодическое решение с большой амплитудой m 1 устойчиво.

Таким образом, в исследуемой релейной системе существует автоколебательный режим с частотой w 0 = 4.3 c -1 и амплитудой a 0 = b´m 1 = = 58 В.

Министерство образования и науки Российской Федерации

Саратовский государственный технический университет

Балаковский институт техники, технологии и управления

Метод гармонической линеаризации

Методические указания к лабораторной работе по курсу «Теория автоматического управления» для студентов специальности 210100

Одобрено

редакционно –издательским советом

Балаковского интститута техники,

технологии и управления

Балаково 2004

Цель работы: Изучение нелинейных систем с помощью метода гармонической линеаризации (гармонического баланса), определение коэффициентов гармонической линеаризации для различных нелинейных звеньев. Получение навыков по нахождению параметров симметричных колебаний постоянной амплитуды и частоты (автоколебаний), используя алгебраический, частотный способы, а также с помощью критерия Михайлова.

ОСНОВНЫЕ СВЕДЕНИЯ

Метод гармонической линеаризации относится к приближенным методам исследования нелинейных систем. Он позволяет достаточно просто и с приемлемой точностью оценивать устойчивость нелинейных систем, определять частоту и амплитуду установившихся в системе колебаний.

Предполагается, что исследуемая нелинейная САУ может быть представлена в следующем виде

причем нелинейная часть должна иметь одну нелинейность

Эта нелинейность может быть как непрерывной, так и релейной, однозначной или гистерезисной.

Любую функцию или сигнал можно разложить в ряд по системе линейно-независимых, в частном случае ортонормированных функций. В качестве такого ортогонального ряда может быть использован ряд Фурье.

Разложим в ряд Фурье выходной сигнал нелинейной части системы

, (2)

здесь - коэффициенты Фурье,

,

,

. (3)

Таким образом, сигнал согласно (2) может быть представлен в виде бесконечной суммы гармоник с возрастающими частотами и т. д. Этот сигнал поступает на вход линейной части нелинейной системы.

Обозначим передаточную функцию линейной части

, (4)

причем степень полинома числителя должна быть меньше степени полинома знаменателя. В этом случае АЧХ линейной части имеет вид

где 1 - не имеет полюсов, 2 - имеет полюс или полюса.

Для АЧХ справедливо записать

Таким образом, линейная часть нелинейной системы является фильтром высоких частот. В этом случае линейная часть будет пропускать без ослабления только низкие частоты, высокие же по мере роста частоты будут существенно ослабляться.

В методе гармонической линеаризации делается предположение о том, что линейная часть системы будет пропускать только постоянную составляющую сигнала и первую гармонику. Тогда сигнал на выходе линейной части будет иметь вид

Этот сигнал проходит по всему замкнутому контуру системы Рис.1 и на выходе нелинейного элемента без учета более высоких гармоник, согласно (2) имеем

. (7)

При исследовании нелинейных систем с помощью метода гармонической линеаризации возможны случаи симметричных и несимметричных колебаний. Рассмотрим случай симметричных колебаний. Здесь и.

Введем следующие обозначения

Подставив их в (7), получим . (8)

С учетом того, что

. (9)

Согласно (3) и (8) при

,

. (10)

Выражение (9) является гармонической линеаризацией нелинейности устанавливает линейную связь входной переменной и выходной при . Величины и называются коэффициентами гармонической линеаризации.

Необходимо отметить, что уравнение (9) является линейным для конкретных величин и (амплитуды и частоты гармонических колебаний в системе). Но в целом оно сохраняет нелинейные свойства, так как коэффициенты различны для различных и . Эта особенность и позволяет исследовать с помощью метода гармонической линеаризации свойства нелинейных систем [ Попов Е.П.].

В случае несимметричных колебаний гармоническая линеаризация нелинейности приводит к линейному уравнению

,

,

. (12)

Так же как и уравнение (9), линеаризованное уравнение (11) сохраняет свойства нелинейного элемента, так как коэффициенты гармонической линеаризации , , а так же постоянная составляющая зависят и от смещения и от амплитуды гармонических колебаний .

Уравнения (9) и (11) позволяют получить передаточные функции гармонически линеаризованных нелинейных элементов. Так для симметричных колебаний

, (13)

при этом частотная передаточная функция

зависит только от амплитуды и не зависит от частоты колебаний в системе.

Необходимо отметить, что если нечетно-симметричная нелинейность однозначна, то в случае симметричных колебаний в соответствии с (9) и (10) получим, что , (15)

(16)

и линеаризованная нелинейность имеет вид

Для неоднозначных нелинейностей (с гистерезисом) интеграл в выражении (16) не равен нулю, вследствие различия в поведении кривой при возрастании и убывании , поэтому справедливо полное выражение (9).

Найдем коэффициенты гармонической линеаризации для некоторых нелинейных характеристик. Пусть нелинейная характеристика имеет вид релейной характеристики с гистерезисом и зоной нечувствительности. Рассмотрим, как гармонические колебания проходят через нелинейный элемент с такой характеристикой.



При выполнении условия , то есть если амплитуда входного сигнала меньше зоны нечувствительности , то сигнал на выходе нелинейного элемента отсутствует. Если же амплитуда , то реле переключается в точках A, B, C и D. Обозначим и .

,

. (18)

При вычислении коэффициентов гармонической линеаризации следует иметь ввиду, что при симметричных нелинейных характеристиках интегралы в выражениях (10) находятся на полупериоде (0, ) с последующим увеличением результата в два раза. Таким образом

,

. (19)

Для нелинейного элемента с релейной характеристикой и зоной нечувствительности

,

Для нелинейного элемента, имеющего релейную характеристику с гистерезисом

,

Аналогично могут быть получены коэффициенты гармонической линеаризации для других нелинейных характеристик.

Рассмотрим два способа определения симметричных колебаний постоянной амплитуды и частоты (автоколебаний) и устойчивости линеаризованных систем: алгебраический и частотный. Сначала рассмотрим алгебраический способ. Для замкнутой системы Рис.1 передаточная функция линейной части равна

.

Запишем гармонически линеаризованную передаточную функцию нелинейной части

.

Характеристической уравнение замкнутой системы имеет вид

. (22)

Если в исследуемой системе возникают автоколебания, то это говорит о наличии двух чисто мнимых корней в ее характеристическом уравнении. Поэтому подставим в характеристическое уравнение (22) значение корня .

. (23)

Представим

Получим два уравнения, определяющих искомую амплитуду и частоту

,

. (24)

Если в решении возможны вещественные положительные значения амплитуды и частоты , то в системе могут возникнуть автоколебания. Если же амплитуда и частота не имеет положительных значений, то автоколебания в системе невозможны.

Рассмотрим пример 1. Пусть исследуемая нелинейная система имеет вид

В этом примере нелинейный элемент представляет собой чувствительный элемент с релейной характеристикой, для которого коэффициенты гармонической линеаризации

Исполнительное устройство имеет передаточную функцию вида

Передаточная функция объекта регулирования равна

. (27)

Передаточная функция линейной части системы

, (28)

На основании (22), (25) и (28) запишем характеристическое уравнение замкнутой системы

, (29)

,

Пусть 1/сек, сек, сек, в.

В этом случае параметры периодического движения равны

7,071 ,

Рассмотрим способ определения параметров автоколебаний в линеаризованной САУ с помощью критерия Михайлова. Способ основан на том, что при возникновении автоколебаний система будет находиться на границе устойчивости и годограф Михайлова в этом случае будет проходить через начало координат.

В примере 2 найдем параметры автоколебаний при том условии, что нелинейный элемент в системе Рис.4 представляет собой чувствительный элемент, имеющий релейную характеристику с гистерезисом, для которого коэффициенты гармонической линеаризации

,

Линейная часть осталась неизменной.

Запишем характеристическое уравнение замкнутой системы

Годограф Михайлова получается заменой .

Задача заключается в том, чтобы подобрать такую амплитуду колебаний , при которой годограф пройдет через начало координат. Необходимо отметить, что при этом текущая частота , так как именно в этом случае кривая пройдет через начало координат.

Расчеты, проведенные в MATHCAD 7 при 1/сек, сек, сек, в и в, дали следующие результаты. На Рис.5 годограф Михайлова проходит через начало координат. Для повышения точности расчетов увеличим нужный фрагмент графика. На Рис.6 приведен фрагмент годографа, увеличенный в окрестности начала координат. Кривая проходит через начало координат при в.

Рис.5. Рис.6.

Частоту колебаний при этом можно найти из условия равенства нулю модуля . Для частот

значения модуля сведены в таблицу

Таким образом, частота колебаний 6,38 . Необходимо отметить, что точность расчетов легко может быть увеличена.

Полученное периодическое решение, определяемое значением амплитуды и частоты , необходимо исследовать на устойчивость. Если решение устойчиво, то в системе имеет место автоколебательный процесс (устойчивый предельный цикл). В противном случае предельный цикл будет неустойчивым.

Проще всего для исследования устойчивости периодического решения использовать критерий устойчивости Михайлова в графическом виде. Было установлено, что при кривая Михайлова проходит через начало координат. Если дать малое приращение , то кривая займет положение либо выше нуля, либо ниже. Так в последнем примере дадим приращение в, то есть и . Положение кривых Михайлова показано на Рис.7.

При кривая проходит выше нуля, что говорит об устойчивости системы и затухающем переходном процессе. При кривая Михайлова проходит ниже нуля, система является неустойчивой и переходный процесс является расходящимся. Таким образом периодическое решение с амплитудой в и частотой колебаний 6,38 устойчиво.

Для исследования устойчивости периодического решения может быть использован и аналитический критерий, получаемый из графического критерия Михайлова. Действительно, чтобы узнать пойдет ли кривая Михайлова при выше нуля достаточно посмотреть, куда будет перемещаться точка кривой Михайлова, которая при находится в начале координат.

Если разложить перемещение этой точки по координатным осям X и Y, то для устойчивости периодического решения вектор, определяемый проекциями на координатные оси

должен быть расположен справа от касательной MN к кривой Михайлова, если смотреть вдоль кривой в сторону возрастания , направление которой определяется проекциями

Аналитическое условие устойчивости запишем в следующем виде

В этом выражении частные производные берутся по текущему параметру кривой Михайлова

,

Необходимо отметить, что аналитическое выражение критерия устойчивости (31) справедливо только для систем не выше четвертого порядка, так как например для системы пятого порядка в начале координат условие (31) может выполняться, а система будет неустойчивой

Применим критерий (31) для исследования устойчивости периодического решения, полученного в примере 1.

,

,

, ,