Иттрий алюминиевый гранат. Алюмо-Иттриевый гранат (АИГ)

Титанат стронция (фабулит)

По сравнению с рутилом этот синтетический камень более подходит для замены алмаза в ювелирных изделиях. Он совершенно бесцветен, оптически изотропен, и его показатель преломления (2,41) аналогичен алмазу. Дисперсия у фабулита (0,1 - 0,2) более высокая, что обеспечивает кра-сивую игру при изменении углов падения лучей света или освещения. Твердость фабулита 5,5 - 6,5, поэтому его целесообразно использовать для изготовления серег или кулонов, а не в кольцах, где он быстрее изотрется.

Синтез титаната стронция осуществляется по известному методу М. А. Вернейля.

После выращивания кристаллы обязательно отжигают в струе кислорода при низкой температуре. За рубежом промышленный выпуск фабу-лита осуществляет фирма "Националь Лед и К°" (США). В СССР фабулит не выпускается.

Иттрий-алюминиевый гранат (ИАГ)

Иттрий-алюминиевая окись (Y 3 A1 5 O 12) имеет структуру граната и чаще называется иттрий-алюминиевый гранат - ИАГ или гранатит. Выращивает-ся ИАГ чаще всего по методу Чохральского, однако хорошие результаты дает и метод кристаллизации из расплава с флюсом. Условия синтеза ИАГа весьма подобны условиям выращивания корунда.

Вначале иттрий-алюминиевый гранат применялся только в технике; добавляя некоторые лантаноиды (в частности, неодим), выращивали кристаллы, используемые в лазерной технике: кроме того, кристаллы ИАГ служат подложкой при синтезе ферримагнитных гранатов, применяемых в лазерной технике и радиоэлектронике.

В последние годы ИАГ широко применяют в ювелирных изделиях. Благодаря добавкам лантаноидов стало возможно получать кристаллы разного цвета - красные, зеленые, желтые, коричневые и др., не встречающиеся в природе. За рубежом ИАГ выпускает ряд фирм, наибольшую по-пулярность имеют гранаты фирмы "Линда" (США).

В СССР ИАГ изготавливают по методу направленной кристаллизации, позволяющему выращивать идеально правильные и чистые кристаллы.

Искусственный гранат образуется при высоких температурах в глубоком вакууме в специальных аппаратах. Завод выпускает светлые гранаты, розовые, желтые и зеленые. Время синтеза - около 4 суток. Ведутся иссле-дования, направленные на получение кристаллов ИАГ любой окраски - от пурпурной и лимонной до чисто-голубой и сиреневой.

Ниобат лития

Ниобат лития - LiNbO 3 - относительно мягкий синтетический камень (твердость около 5,5 по шкале Мооса). Интересен он прежде всего оптическими свойствами, что позволило использовать его в лазерной технике. Показатель преломления его 2,2 -2,3, дисперсия вы-сокая 0,12, что обеспечивает красивую игру камня.

Кристаллы выращивают по методу Чохральского. При добавках в расплав окислов металлов переходной группы можно получить кристаллы различной окраски: при введении окиси хрома - зеленую, окиси железа -красную, окиси кобальта - голубую или синюю. В СССР ниобат лития не синтезируют.

Существует несколько видов синтезированных камней которые не встречаются в природе. Эти кристаллы вырастили случайно когда производили исследования в области физики твёрдого тела. Некоторые из этих кристаллов после огранки начали использовать в ювелирном деле.

Титанат стронция

Одним из таких является синтетический титанат стронция которое вырастили в горелке Вернейля. Титанат стронция имеет химический состав SrTiO3. Титанат стронция как и минерал перовскит (CaTiO3) очень схожи по своей кубической структуре и форме кристаллов. Титанат стронция изотропен, почти бесцветен, имеет показатель преломления в натриевом свете 2,410, дисперсию 0,19 в интервале от B до G, удельный вес 5,1, твёрдость 6. Титанат стронция также имеет и другие названия такие как старилиан, фабулит, диагем. Титанат стронция с бриллиантовой огранкой очень похож на алмаз хотя его легко можно распознать даже по твёрдости или по удельному весу у алмаза он составляет 3,52, к тому же он не флюоресцирует в ультрафиолетовом свете. Из-за того что титанат стронция легко отличить от алмаза его не стали использовать в ювелирном деле.

Ниобат лития

Ещё одно вещество которое не встречается в природе но искусственно можно вырастить это ниобат лития. Ниобат натрия попал на ювелирный рынок Америки под названием Линобат. Ниобат лития выращивают в основном бесцветным но если добавить специальные присадки то он может приобрести цвет от красного до фиолетового. Ниобат лития имеет химический состав LiNbO3. По своим химическим свойствам он очень близок к свойствам титаната стронция. Но в отличие от Титаната стронция это искусственно выращенное вещество не изотропное, а одноосное или по другому тригональное. Ниобат лития имеет показатели преломления обыкновенного луча в натровом свете 2,30, показатели преломления не обыкновенного луча 2.21. У ниобата лития твёрдость 5,5, удельный вес 4,64, дисперсия 0,120 в интервале от B до G, что в 3 раза выше дисперсии алмаза.

Физики синтезировали несколько веществ по структуре очень похожими на гранаты. Такие минералы в природе не встречаются. Эти гранатоподобные вещества имеют химическую формулу X3AL3O12. Эти вещества создают в горелке Вернейля или по методу Чохральского при котором подвешенный над расплавом натуральный минерал в качестве затравки опускают до того момента когда она прикоснётся к поверхности расплава, а затем её поднимают и при этом её вращают. Из-за этого кристалл получается крупным цилиндрической формы. Такой процесс ещё называют вытягиванием из расплава. Самыми востребованными из этих веществ являются Иттрий алюминиевого граната и Даймонэр. Обычно Иттрий алюминиевый гранат и Даймонэр изготавливают бесцветными но можно придать им различный цвет добавив для этого специальную примесь. Например если добавить хром то вещество приобретёт зелёную окраску и станет похожим на демантоид. Отличить синтетическое вещество от демантоида можно по удельному весу так как у вещества удельный вес 4,6, а у демантоида намного меньше.

Одним из наиболее широко используемых в настоящее время твердотельных лазеров является лазер, в котором матрицей служит иттрий-алюминиевый гранат а активатором - ионы . Принятое обозначение этого лазера

Лазер имеет сравнительно низкий порог возбуждения и высокую теплопроводность, что позволяет реализовать генерацию при большой частоте следования импульсов, а также генерацию в непрерывном режиме. КПД лазера сравнительно высок; он достигает нескольких процентов.

Основные переходы иона неодима в гранате показаны на рис. 1.16. Переходы совершаются между определенными атомными которые изображены на рисунке в виде «энергетических полос». Каждой «полосе» (каждому терму) соответствует группа относительно узких энергетических уровней, возникших в результате расщепления данного терма в электрическом поле кристаллической решетки граната (штарковское расщепление).

В процессе накачки ионы неодима переходят из основного состояния, соответствующего терму в три группы состояний: А, Б, В. Группа А соответствует термам группа Б - термам и группа В - терму Этим трем группам состояний отвечают три полосы в спектре поглощения неодима в гранате,

представленном на рис. 1.17, а (соответственно А-, Б- и В-полосы). Тонкая структура полос поглощения, хорошо видная на рисунке, отражает эффект штарковского расщепления термов.

Терм является верхним рабочим «уровнем». Ионы неодима высвечиваются, переходя с этого «уровня» на уровни, соответствующие термам . Основная доля энергии (60%) высвечивается в переходах в качестве нижних рабочих уровней принято рассматривать уровни, соответствующие терму На рис. представлен спектр люминесценции неодима в гранате для переходов Спектр содержит 7 линий; наиболее интенсивны линии 1,0615 и 1,0642 мкм. В табл. 1.1 приведены значения длин волн для 18 линий люминесценции с учетом различных переходов 114]; данные получены при температуре 300 К. При упрощенном рассмотрении лазера можно пользоваться четырехуровневой рабочей схемой; основной «уровень» - терм 4/9/2, нижний рабочий «уровень» - терм верхний рабочий «уровень» - терм «уровень» возбуждения - термы и Заметим, что переходы запрещены в дипольном приближении (оптически запрещены), поскольку при таких переходах орбитальное квантовое число иона неодима изменяется на 3; следовательно, состояния, соответствующие -термам, являются метастабильными.

Алюмо-Иттриевый гранат (АИГ) это оптический материал пригодный для использования в УФ и ИК оптике . Изделия из YAG можно применять в качестве оптических элементов в широкой области спектра от 250-5000 нм. Механические и химические свойства YAG близки к сапфиру, однако YAG не обладает двулучепреломлением и его обработка несколько проще,чем обработка сапфира. YAG не имеет линий поглощения в области 2 – 3мкм, где обычно стекла имеют тенденцию высокого поглощения из за сильных связей молекул воды. Благодаря высоким показателям прочности, порога разрушения, показателя преломления и теплопроводности YAG может быть использован при высоких температурах и в высокомощных лазерах.

Мы используем для нашей оптики высококачественные кристаллы, выращеные по методу Чохральского и горизонтальным методом по выбору заказчика. Наша фирма осуществляет лазерную полировку YAG, изготавливая светопроводы, призмы и зеркала.

Оптические свойства

Область пропускания, мкм 0.21 to 5.3
Показатель преломления, при 1.064 мкм 1.82
Потери при отражении, % для двух поверхностей 1.064 мкм 16.7%
Термооптический фактор (dT), 633 нм 7.3 * 10 -6 * K -1

Физические свойства

Плотность, г/см3(20°C) 4.56
Растворимость Нерастворим в воде
Тип материала Синтетический монокристалл
Кристаллическая структура кубическая
Точка плавления °C 1940
Теплопроводность W * cm -1 * °K -1 0.14
Температурный коэффициент линейного расширения 1/°C 7.8 x 10 -6
Удельная теплоёмкость J /(kg * K ) at 0 °C 590
Диэлектрическая постоянная 11.7
Модуль Юнга (E ), GPa 300
Коэффициенты упругости C 11 = 333
C 12 = 111
C 44 = 115
предел упругости MPa 280
Твёрдость по Моосу ~8,5


Иттрий алюминиевый гранат легированный неодимом (Y 3 A 15 O 12:Nd 3+ )

Алюмо-Иттриевый гранат легированный неодимом( Y 3 A 15 O 12:Nd 3+) - лазерный кристалл, который широко используется в промышленных, медицинских и научных целях. Его основными преимуществами являются: низкий порог генерации, высокий КПД, низкие потери на 1.064 µm , а также высокое оптическое качество, хорошая теплопроводность и устойчивость к перепадам температур, стабильные химические и механические свойства, что позволяет применять Nd :YAG во всех типах твердотельных лазеров.

Свойства
Химическая формула Nd 3+ :Y 3 Al 5 O 12
Кристаллическая структура Кубическая
Концентрация лигатуры,ат.% 0.5 - 1.2
Постоянная решетки, A 12.01
Плотность г/см3 4.56
Точка плавления, °C 1950
Диэлектрическая постоянная 11.7
Твердость по Моссу 8.5
7.8 x 10 -6 x °K -1 , <111>
8.2 x 10 -6 x °K -1 , <100>
Теплопроводность 25°C, W x cm -1 x °K -1 0.14
Коэффицент потерь при 1064 nm, cm -1 0.003
Коэффицент преломления, при 1 µm 1.82

Спецификация лазерных стержней Nd:YAG

Материал Иттрий алюминиевый гранат легированный неодимом
Уровень легирования 0.5 - 2.3 %
Разброс легирования +/- 0.1 %
Ориентация <111>
Допуск ориентации +/-5º
Допуск по диаметру +/- 0.05 мм
Допуск по длине +/- 0.5 мм илипо требованию
Паралельность
Перпендикулярность
Искажение волнового фронта Lambda/8на дюйм на 633 нм
Плоскостность Lambda/10 на 633 nm или по требованию заказчика
Точки-царапины 10-5 MIL – 13830B
Боковая поверхность Шлифованные или полированные
Световая аппертура 90% центральная часть
Фаски <0.15 мм x 45º
Покрытия AR покрытия R<0.2% с поверхности на1064 nm или по требованию заказчика

Дополнительно АРД-ОПТИКС предлогает услуги по ремонту
(переполировка и нанесение покрытий) лазерных элементов заказчика

Иттрий алюминиевый гранат легированный эрбием (Er:Y 3 Al 5 O 12 или Er:YAG)

Иттрий алюминиевый гранат, легированный эрбием ( Er :Y 3 Al 5 O 12 или Er :YAG ) - лазерный кристалл, который имеет широкие преимущества при использовании на длине волны 2.94 µ. Er :YAG имеет высокое оптическое качество, высокий КПД , хорошую теплопроводность, стабильные химические и механические свойства. Er :YAG накачивается в широкой области 600 - 800 нм. Все эти свойства делают Er :YAG превосходным материалом для стоматологических и других медицинских лазеров.

Основные свойства
Химическая формула Er:Y 3 Al 5 O 12
Кристаллическая структура Cubic
Концентрация лигатуры, ат.% 1 - 50%
Постоянная решетки, A 12.00
Плотность,г/см3 5.35
Точка плавления, ºC 1970
Диэлектрическая постоянная 11.7
Твердость по Моссу 8.5
.Коэффицент термического расширения 7.7 x 10-6 x ºK-1, <111> 8.2 x 10-6 x ºK-1, <100>
Теплопроводность при 25ºC, W x cm-1 x ºK-1 0.12
Коэффицен потерь на 1064 нм, cm-1 0.003
Длина волны излучения, нм 2940
Коэффицент преломления, на 2940 нм 1.79

Спецификация лазерных стержней Er:YAG

Материал Иттрий алюминиевый гранат легированный эрбием
Уровень легирования 1 - 50 %
Ориентация <111>
Допуск на ориентацию +/-5º
Допуск на диаметр +/- 0.05 мм
Допуск на длинуe +/- 0.5 мм или по требованию заказчика
Паралельность
Перпендикулярность
Искажение волнового фронта Lambda/8 на дуйм на 633 нм
Плоскостностьs Lambda/10 at 633нм или по требованию заказчика
Царапины-точки 10-5
Бокавая поверхность Шлифованные или полированные
Световая аппертура 90%
Фаски <0.15 mm x 45º
Покрытия AR покрытия с R<0.25 % на 2940 нм или по требованию заказчика

Дополнительно АРД-ОПТИКС предлогает услуги по ремонту
(переполировка и нанесение покрытий) лазерных элементов заказчика

Иттрий алюминиевый гранат легированный иттербием (Yb: Y 3 Al 5 O 12 или Yb:YAG)

Алюм-иттриевый гранат, легированный иттербием(Yb: Y 3 Al 5 O 12 или Yb:YAG ) является одним из многообещающих лазерных активных материалов и более удобным для диодной накачки по сравнению с традиционными Nd гранатами. Он может генерировать на длине волны 1,03µ при накачке 940 нм. Основные преимущества Yb :YAG : широкая полоса поглощения, высокая эффективность и превовсодная эммисия. Лазерный материал Yb :YAG широко используется в промышленных лазерах для резки и сварки металлов. Этот кристалл также применяется в электронике, оптике и в лазерных технологиях.

Основные свойства
Химическая формула Yb 3+ :Y 3 Al 5 O 12
Кристаллическая структура кубическая
Концентрация легирования,ат.% 5 - 30 %
Постоянная решетки, A 12.01
Плотность г/см3 4.56
Точка плавления, °C 1970
Твердость по Моссу 8.5
Коэффицент термического расширения 7.8 x 10 -6 x °K -1 , <111>
Теплопроводность25°C, W x cm -1 x °K -1 0.14
Коэффицент потерь на 1064 нм, см -1 0.003
Длина волны генерации, нм 1030
Коэффицент преломления, на 1 µ 1.82

Спецификация лазерных стержней Yb:YAG

Материал Иттрий алюминиевый гранат легированный иттербием
Уровень легироваия 5 - 30 %
Ориентация <100>
Допуск на ориентацию +/-5º
Допуск на диаметр +/- 0.05 мм
Допуск на длину +/- 0.5 мм или по требванию заказчика
Параллельность
Перпендикулярность
Искажение волнового фронта Lambda/8 на дуйм на 633 нм
Плоскостность Lambda/10 на 633 нм или по требованию заказчика
Точки-царапины 10-5
Боковая поверхность Шлифованные или полированные
Световая аппертура 90% центральной области
Фаски <0.15 мм x 45º
Покрытия AR покрытия с R<0.25% с поверхности на требуемой длине волны

Дополнительно АРД-ОПТИКС предлогает услуги по ремонту
(переполировка и нанесение покрытий) лазерных элементов заказчика

Синтетический иттрий-алюминиевый гранат (ИАГ)

кристаллические соединения общей ф-лы R 3 III M 2 III (X III O 4) 3 , где R ni -Y или другие РЗЭ, М III , X III -Fe, Al, Ga, подобные по структуре прир. гранатам R II 3 M III 2 (SiO 4) 3 (кубич. кристаллич. решетка, пространств, группа Ia3d). Структура гранатов синтетических каркасная, построена из тетраэдров ХО 4 и октаэдров МО 6 , в полостях к-рых расположены полиэдры RO 8 . Гранаты синтетические обладают высокими твердостью и прочностью (см. табл.). Химически стойки, не раств. в воде. Для гранатов синтетических характерен изоморфизм атомов R, М и X, вследствие чего существуют многочисл. разновидности этих соединений. Ниже приводятся св-ва наиб. важных гранатов синтетических.

Иттрий-железный гранат Y 3 Fe 2 (FeO 4) 3 - красно-бурые кристаллы; 10 14 Ом*см; точка Кюри 556 К; оптически прозрачен в области 1,1-1,5 мкм. Образуется при сплавлении оксидов Y и Fe. Монокристаллы выращивают из р-ра Y 2 O 3 (10,0% по массе) и Fe 2 O 3 (20,4%) в расплавленной смеси РbО (36,8%), PbF 2 (27,1%) и В 2 О 3 (5,5%) при снижении т-ры от 1300 до 930°С со скоростью 0,3-0,5 град/ч; используют также метод Вернейля. Материал магнитных запоминающих устройств, магнитных сердечников в микроволновой и телевизионной аппаратуре.

Иттрий-алюминиевый гранат – ИАГ- Y 3 Al 2 (A1O 4) 3 бесцв. кристаллы; оптически прозрачен в области 0,24-6,00 мкм. Не взаимод. с к-тами. Выше 500°Г раств. в расплавленной смеси PbO-PbF 2 -В 2 О 3 . Образуется при сплавлении оксидов Y и А1 выше 1500 С. наиб. распространенные методы выращивания монокристаллов: вытягивание из расплавленной стехиометрич. смеси оксидов при 2000 °С со скоростью 0,5-1 мм/ч с использованием ориентированной затравки (диаметр кристаллов до 60 мм, длина до 300 мм); горизонтально направленная кристаллизация из расплава в молибденовой лодочке со скоростью до 8 мм/ч; вертикально направленная кристаллизация. Иттрий-алюминиевый гранат, не содержащий изоморфных примесей,-ювелирный поделочный камень (имитатор бриллиантов), легированный Nd - материал для лазеров с длиной волны генерируемого излучения 1,064 и 1,320 мкм; для генерации излучения с длинами волн 1645 и 2060 нм этот гранат легируют Ег, Yb, Но, Тт (изоморфно замещающими Y и А1 в кристаллич. решетке). Физики из Екатеринбурга получили нанопорошок из иттрий-алюминиевого граната методом лазерного испарения

На основе этого ИАГ- нанопорошка с размером частиц порядка 10 нанометров была изготовлена оптическая керамика с высоким коэффициентом пропускания инфракрасного света.

СВОЙСТВА ГРАНАТОВ

* Легирован Nd III и Сr Ш

Гадолиний-галлиевый гранат Gd 3 Ga 2 (GaO 4) 3 -« Г Г Г» -бесцв. кристаллы. Слабо взаимод. с сильными к-тами. Образуется из оксидов Gd и Ga выше 1400 °С. Монокристаллы выращивают методом Чохральского в иридиевых тиглях со скоростью вытягивания 3-6 мм/ч; диаметр нелегированных кристаллов до 100 мм, длина до 300 мм. Материал подложек для наращивания эпитаксиальных пленок железных гранатов (см. Ферриты), используемых в магнитных запоминающих устройствах;легированный Nd III и др. - РЗЭ-лазерный материал. Ювелирный поделочный камень


Гадолиний-скандий-галлиевый гранат – «Г С Г Г» - Gd 3 Sc 2 (GaO 4) 3 , легированный Nd III (3,5*10 20 атомов в 1 см 3) и Сr III (2*10 20 атомов),-кристаллы изумрудно-зеленого цвета. Получают сплавлением оксидов Gd, Sc и Ga. Монокристаллы выращивают по методу Чохральского из расплавленной смеси оксидов Gd, Sc и Ga выше 1500°С со скоростью вытягивания 2-4 мм/ч в атмосфере N 2 (98%) и О 2 (2%). Перспективный лазерный материал.

jQuery(document).ready(function(){ jQuery(".js-message-slider").slider({ headerEl: "p.js-message"", contentEl: "div.b-contain", mode: "multiple", partsEl: "div.js-message-block", openClass: "minus", closeClass: "plus" }); }) Лазерные кристаллы на базе иттрий-алюминиевого граната, легированного ионами эрбия (ИАГ:Er)

Поставщик: ООО «Инженерный Центр Новых Технологий» Ключевые слова: монокристаллы, лазерные кристаллы

Компания ООО «Инженерный Центр Новых Технологий» более 10 лет успешно занимается выращиванием монокристаллов на базе иттрий-алюминиевого граната, легированного ионами эрбия (ИАГ:Er) и производством активных элементов на базе данного кристалла.

В настоящее время ИАГ:Er является самым распространенным кристаллом, на базе которого возможно реализовать генерацию в трехмикронной области спектра в твердотельных лазерах.

Лазеры на базе кристаллов ИАГ:Er нашли широкое применение в медицине. Прежде всего это связано с тем, что коэффициент поглощения света в воде на длине волны 2,94 мкм достигает экстремально высоких значений (k=1,2x10,sup>4 см -1).

«ИЦНТ» предлагает кристаллы ИАГ:Er различной геометрии (диаметром от 3 мм до 8 мм и длиной до 120 мм).

ИТТРИЙ-АЛЮМИНИЕВЫЙ ГРАНАТ (ИАГ) (TR)3Al 2 3. Получен в начале 60-х годов, с 1969 г. используется как ювелирный камень. Синонимы (коммерч. изд.): геллинэр, гранатит, даймоник, даймонэр, циролит и др. Возможны окрашивающие примеси: Tb, Dy, Но, Ег, Tu, Yb, Lu, Cr. Куб.с. Структура аналогична природному гранату (островная). Прозрачный. Бесцветный, зеленый, желтый, сиреневый, розовый и др. В УФ-лучах инертен, белый, розовый, сиреневый, желтый. Бл. стеклянный. Изотропный, n=1,832-1,873. Дисперсия 0,028. Тв. 8,5. Пл. 4,57-5,69 г/см3. Методы получения: зонная плавка, Чохральского и др. Широко используется в ювелирном деле. Диагностируют по оптическим свойствам. Cr-содержащая разновидность -красная под фильтром Челси. Бесцветный имитирует бриллиант, отличается включениями, меньшей тв., более высокой пл. Природного аналога нет.