Характеристика классификационных признаков. Классификация химических реакций, лежащих в основе промышленных химико-технологических процессов Обратимые и необратимые химические реакции

И классификация сталей

- качество;

- химический состав;

- назначение;

- микроструктура;

- прочность .

Качество стали

По химическому составу

Углеродистые стали постоянных примесей

Таблица 1.3.

УГЛЕРОДИСТОЙ СТАЛИ

Легирующие элементы добавками или присадками

Легированные стали низколегированные (до 2,5 мас.%), легированные (от 2,5 до 10 мас.%) и высоколегированные «хромистая»

По назначению стали

Конструкционными низко- (или мало-) и среднеуглеродистыми.

Инструментальными высокоуглеродистыми.

и (с особыми свойствами – ).

и

и повышенной теплостойкости быстрорежущих сталей.

Обыкновенного качества,

Конструкционные стали,

Инструментальные стали,

6) подшипниковые (шарикоподшипниковые ) стали,

7) быстрорежущие стали (высоколегированные, высококачественные инструментальные стали с повышенным содержанием вольфрама).

8) автоматные, т.е. повышенной (или высокой) обрабатываемости , стали.

Анализ состава исторически сложившихся маркировочных групп сталей показывает, что применяемые системы маркировки позволяют кодировать пять классификационных признаков, а именно: качество, химический состав, назначение, степень раскисленности, а также способ получения заготовок (автоматные или, в редких случаях, литейные). Связь маркировочных групп и классов сталей иллюстрируется нижней частью блок-схемы на рис.1.

СИСТЕМА МАРКИРОВОЧНЫХ ГРУПП, ПРАВИЛА МАРКИРОВКИ И ПРИМЕРЫ МАРОК СТАЛЕЙ

УГЛЕРОДИСТЫЕ ОБЫКНОВЕННОГО КАЧЕСТВА
Группа стали Гарантия поставки МАРКИ
А по химическому составу Ст0 Ст1 Ст2 СтЗ Ст4 Ст5 Ст6
Б по механическим свойствам БСт0 БСт1 БСт2 БСтЗ БСт4 БСт5 БСт6
В по механическим свойствам и химическому составу ВСтО ВСт1 ВСт2 ВСтЗ ВСт4 ВСт5 ВСт6
Концентрация углерода, мас. % 0,23 0,06-0,12 0,09-0,15 0,14-0,22 0,18-0,27 0,28-0,37 0,38-0,49
КАЧЕСТВЕННЫЕ ВЫСОКОКАЧЕСТВЕННЫЕ КОНСТРУКЦИОННЫЕ ПРИМЕРЫ МАРОК
Марка: двузначное число СОТЫХ ДОЛЕЙ процента углерода + указание степени раскисления 05 08кп 10 15 18кп 20А 25пс ЗОА 35 40 45 50 55 ... 80 85 Примечания: 1) отсутствие указателя степени раскисленности означает «сп»; 2) «А» в конце марки показывает, что сталь - высококачественная
ИНСТРУМЕНТАЛЬНЫЕ МАРКИ
Марка: символ «У» + число ДЕСЯТЫХ ДОЛЕЙ процента углерода У7 У7А У8 УВА У9 У9А У10 У10А У12 У12А
ЛЕГИРОВАННЫЕ КАЧЕСТВЕННЫЕ ВЫСОКОКАЧЕСТВЕННЫЕ ОСОБОВЫСОКОКАЧЕСТВЕННЫЕ КОНСТРУКЦИОННЫЕ ПРИМЕРЫ МАРОК
Марка: двузначное число СОТЫХ ДОЛЕЙ процента углерода + символ легирующего элемента + целое число его процентов 09Г2 10ХСНД 18Г2АФпс 20Х 40Г 45ХН 65С2ВА 110Г13Л Примечания: 1) цифра «1» как указатель концентрации ≤ 1 мас.% легирующего элемента не ставится; 2) марка 110Г13Л - одна из немногих, в которой число сотых долей процента углерода - трехзначное
ИНСТРУМЕНТАЛЬНЫЕ ПРИМЕРЫ МАРОК
Марка: число ДЕСЯТЫХ ДОЛЕЙ процента углерода + символ легирующего элемента + целое число его процентов ЗХ2Н2МФ 4ХВ2С 5ХНМ 7X3 9ХВГ X ХВ4 9Х4МЗФ2АГСТ-Ш Примечания: 1) число «10» как указатель «десяти десятых» мас.% углерода не ставится; 2) «-Ш» в конце марки показывает, что сталь - особовысококачественная, полученная, например, методом электрошлакового переплава (но не только)

Углеродистые конструкционные стали обыкновенного качества

Конкретные стали указанной маркировочной группы обозначаются с помощью двухбуквенного сочетания «Ст» которое является ключевым (системообразующим) в рассматриваемой маркировочной группе. Марки сталей данной группы сразу узнаются по этому символу.

За символом «Ст» без пробела следует цифра, указывающая номер марки – от «0» до «6».

Возрастание номера марки соответствует росту содержания углерода в стали, однако не указывает на его конкретное значение. Допустимые пределы концентрации углерода в сталях каждой марки показаны в табл. 1.5. Содержание углерода в сталях углеродистых обыкновенного качества не превышает 0,5 мас.%. Такие стали являются доэвтектоидными по структурному критерию, и, значит, конструкционными по назначению.

После цифры следует одно из трех буквосочетаний: «кп», «пс», «сп», – показывающее степень раскисленности стали.

Перед символом «Ст» могут стоять заглавные буквы «А»,«Б» или «В» либо может не быть никаких символов. Таким способом передается информация о принадлежности стали к одной из так называемых «групп поставки»: А, Б илиВ , – в зависимости от того, какой из нормируемых показателей стали гарантируется поставщиком.

Сталь группы А поставляется с гарантией химического состава, или заданных ГОСТом допустимых значений концентрации углерода и примесей. Буква «А» часто в марке не ставится и ее отсутствие по умолчанию означает гарантию химического состава. Потребитель стали, не имея информации о механических свойствах, может формировать их путем соответствующей термообработки, выбор режимов которой требует знания химического состава.

Сталь группы Б поставляется с гарантией требуемых механических свойств. Потребитель стали может определить оптимальное ее применение в конструкциях по известным характеристикам механических свойств без предварительной термообработки.

Сталь группы В поставляется с гарантией как химического состава, так и механических свойств. Используется потребителем, главным образом, для создания сварных конструкций. Знание механических свойств позволяет прогнозировать поведение нагруженной конструкции в зонах, далеких от сварных швов, а знание химсостава дает возможность предсказывать и, по необходимости, исправлять термообработкой механические свойства собственно сварных швов.

Примеры записи марок углеродистой стали обыкновенного качества выглядят следующим образом: ВСт3пс , БСт6сп , Ст1кп .

Шарикоподшипниковые стали

Стали для подшипников имеют собственную маркировку, по назначению составляют особую группу конструкционных сталей, хотя по составу и свойствам они близки к инструментальным сталям . Термин «шарикоподшипниковые» определяет их узкую область назначения – подшипники качения (не только шариковые, но также роликовые и игольчатые). Для ее маркировки была предложена аббревиатура «ШХ» – шарикоподшипниковая хромистая , – за которой ставится число десятых долей процента средней концентрации хрома . Из ранее широко известных марок ШХ6, ШХ9 и ШХ15 в употреблении осталась марка ШХ15. Отличие шарикоподшипниковой стали от аналогичной инструментальной – в более жестких требованиях к количеству неметаллических включений и равномерности распределения карбидов в микроструктуре.

Усовершенствование стали ШХ15 путем введения в нее дополнительных легирующих добавок (кремния и марганца) своеобразно отразилось в маркировке – распространением на специфическую систему более поздних правил обозначения легирующих элементов в составе легированных сталей: ШХ15СГ, ШХ20СГ.

Быстрорежущие стали

Быстрорежущие стали специфически маркируются начальной буквой русского алфавита «Р», соответствующей первому звуку в английском слове rapid – быстрый, скорый . Далее следует целое число процентов вольфрама. Как уже было сказано, наиболее распространенной ранее маркой быстрорежущей стали была Р18.

В связи с дефицитностью и дороговизной вольфрама произошел переход на вольфрамомолибденовую сталь Р6М5 без азота и Р6АМ5 с азотом . Аналогично подшипниковым сталям, произошло слияние (своего рода «гибридизация») двух систем маркировки. Разработка и освоение новых быстрорежущих сталей с кобальтом и ванадием обогатило арсенал «гибридных» марок: Р6АМ5Ф3, Р6М4К8, 11Р3АМ3Ф2 – а также привело к появлению вообще безвольфрамовых быстрорежущих сталей, которые маркируются и в специфической системе (Р0М5Ф1, Р0М2Ф3) , и полностью по-новому – 9Х6М3Ф3АГСТ-Ш, 9Х4М3Ф2АГСТ-Ш .

Классификация чугунов

Чугунами называют сплавы железа с углеродом, имеющие в своем составе более 2,14 мас.% С.

Чугуны выплавляют для передела в сталь (передельные), для получения ферросплавов, играющих роль легирующих присадок, а также как высокотехнологичные сплавы для получения отливок (литейные).

Углерод может находиться в чугуне в виде двух высокоуглеродистых фаз – цементита (Fe 3 C) и графита, а иногда одновременно в виде цементита и графита. Чугун, в котором присутствует только цементит, дает светлый блестящий излом и поэтому называется белым . Присутствие графита придает излому чугуна серый цвет. Однако не всякий чугун с графитом относится к классу так называемых серых чугунов. Между белыми и серыми чугунами лежит класс половинчатых чугунов.

Половинчатыми чугунами называют чугуны, в структуре которых, несмотря на графитизацию, хотя бы частично сохранился цементит ледебурита, а, значит, присутствует собственно ледебурит – имеющая специфический вид эвтектическая структурная составляющая.

К серым относят чугуны, в которых полностью распался цементит ледебурита, и последнего в структуре не стало. Серый чугун состоит из графитных включений и металлической основы . Эта металлическая основа представляет собой перлитную (эвтектоидную), феррито-перлитную (доэвтектоидную) или ферритную (малоуглеродистую) сталь. Указанной последовательности видов металлической основы серых чугунов соответствует все большая степень распада цементита, входящего в состав перлита.

Антифрикционные чугуны

Примеры марок: АЧС-1, АЧС-2, АЧС-3.

Специальные легированные жаростойкие , коррозионностойкие и жаропрочные чугуны:

ПРИМЕРЫ МАРОК СПЕЦИАЛЬНЫХ СЕРЫХ ЧУГУНОВ

Классификация и маркировка

металлокерамических твердых сплавов

Металлокерамическими твердыми сплавами называют сплавы, изготовленные методом порошковой металлургии (металлокерамики) и состоящие из карбидов тугоплавких металлов: WC, TiC, TaC, – соединенных пластичной металлической связкой, чаще всего кобальтом.

В настоящее время в России изготовляют твердые сплавы трех групп: вольфрамовые, титановольфрамовые и титанотанталовольфрамовые , – содержащие в качестве связки кобальт .

Из-за дороговизны вольфрама разработаны твердые сплавы, совсем не содержащие карбида вольфрама. В качестве твердой фазы они содержат только карбид титана либо карбонитрид титана – Ti(NC). Роль пластичной связки выполняет никель-молибденовая матрица . Классификация твердых сплавов представлена блок-схемой.

В соответствии с пятью классами металлокерамических твердых сплавов существующие правила маркировки образуют пять маркировочных групп.

Вольфрамовые (иногда называемые вольфрамокобальтовыми) твердые сплавы

Примеры: ВК3, ВК6, ВК8, ВК10.

Титановольфрамовые (иногда называемые титановольфрамокобаль-товыми) твердые сплавы

Примеры: Т30К4, Т15К6, Т5К10, Т5К12.

Титанотанталовольфрамовые (иногда называемые титанотантало-вольфрамокобальтовыми) твердые сплавы


Примеры: ТТ7К12, ТТ8К6, ТТ10К8, ТТ20К9.

Иногда в конце марки через дефис добавляют буквы или буквосочетания, характеризующие дисперсность частиц карбидов в порошке:


КЛАССИФИКАЦИЯ ТВЁРДЫХ МЕТАЛЛОКЕРАМИЧЕСКИХ СПЛАВОВ

Зарубежные аналоги некоторых отечественных марок легированных сталей приведены в таблице 1.1.

Таблица 1.1.

Зарубежные аналоги ряда отечественных марок легированных сталей

Россия, ГОСТ Германия, DIN * США, ASTM * Япония, ЛS *
15Х 15Cr3 SCr415
40Х 41Сг4 SСг440
30ХМ 25СгМо4 SСМ430,SСМ2
12ХГ3А 14NiCr10 ** SNC815
20ХГНМ 21NiСгМо2 SNСМ220
08X13 Х7Сr1З ** 410S SUS410S
20X13 Х20Сг13 SUS420J1
12X17 Х8Сг17 430 (51430 ***) SUS430
12Х18Н9 Х12СгNi8 9 SUS302
08Х18Н10Т Х10CrNiTi18 9 .321 SUS321
10Х13СЮ Х7CrA133 ** 405 ** (51405) *** SUS405 **
20Х25Н20С2 Х15CrNiSi25 20 30314,314 SСS18, SUH310 **

* DIN (Deutsche Industrienorm), ASTM (American Societi for Testing Materials), JIS (Japaneese industrial Standart).

** Сталь, близкая по составу; *** Стандарт SAE

Характеристика классификационных признаков

И классификация сталей

К числу современных классификационных признаков сталей относятся следующие:

- качество;

- химический состав;

- назначение;

- металлургические особенности производства;

- микроструктура;

- традиционный способ упрочнения;

- традиционный способ получения заготовок или деталей;

- прочность .

Кратко охарактеризуем каждый из них.

Качество стали определяется в первую очередь содержанием вредных примесей – серы и фосфора – и характеризуется по 4-м категориям (см. табл. 1.2).

По химическому составу стали условно разделяют на углеродистые (нелегированные) стали и легированные.

Углеродистые стали не содержат специально введенных легирующих элементов. Содержащиеся в углеродистых сталях элементы, кроме углерода, относятся к числу так называемых постоянных примесей . Их концентрация должна находиться в пределах, определяемых соответствующими государственными стандартами (ГОСТами). В таблице 1.3. даются усредненные предельные значения концентрации некоторых элементов, позволяющие относить эти элементы к разряду примесей, а не легирующих элементов. Конкретные пределы содержания примесей в углеродистых сталях дают ГОСТы.

Таблица 1.3.

ПРЕДЕЛЬНЫЕ КОНЦЕНТРАЦИИ НЕКОТОРЫХ ЭЛЕМЕНТОВ, ПОЗВОЛЯЮЩИЕ СЧИТАТЬ ИХ ПОСТОЯННЫМИ ПРИМЕСЯМИ

УГЛЕРОДИСТОЙ СТАЛИ

Легирующие элементы , иногда называемые легирующими добавками или присадками , специально вводятся в сталь для получения требуемой структуры и свойств.

Легированные стали подразделяются по суммарной концентрации легирующих элементов, кроме углерода, на низколегированные (до 2,5 мас.%), легированные (от 2,5 до 10 мас.%) и высоколегированные (более 10 мас.%) при содержании в последних железа не менее 45 мас.%. Обычно вводимый легирующий элемент дает легированной стали соответствующее название: «хромистая» – легированная хромом, «кремнистая» – кремнием, «хромокремнистая» – хромом и кремнием одновременно и т.д.

Кроме того, выделяют также ещё сплавы на основе железа, когда в составе материла железа менее 45%, но его более любого другого легирующего элемента.

По назначению стали подразделяют на конструкционные и инструментальные.

Конструкционными считаются стали, применяемые для изготовления различных деталей машин, механизмов и конструкций в машиностроении, строительстве и приборостроении. Должны обладать необходимой прочностью и вязкостью, а также, если требуется, комплексом специальных свойств (коррозионной стойкостью, парамагнетизмом и т. д.). Как правило, конструкционные стали являются низко- (или мало-) и среднеуглеродистыми. Твердость не является для них решающей механической характеристикой.

Инструментальными называются стали, применяемые для обработки материалов резанием или давлением, а также для изготовления измерительного инструмента. Должны обладать высокой твердостью, износостойкостью, прочностью и рядом других специфических свойств, например, теплостойкостью. Необходимым условием получения высокой твердости является повышенное содержание углерода, поэтому инструментальные стали, за редким исключением, всегда являются высокоуглеродистыми.

Внутри каждой из групп имеет место более детальное деление по назначению. Конструкционные стали подразделяют на строительные, машиностроительные и стали специального применения (с особыми свойствами – жаропрочные, жаростойкие, коррозионностойкие, немагнитные ).

Инструментальные стали разделяют на стали для режущего инструмента, штамповые стали и стали для измерительного инструмента.

Общим эксплуатационным свойством инструментальных сталей является высокая твердость, обеспечивающая сопротивляемость инструмента деформации и истиранию его поверхности. В то же время к сталям для режущего инструмента предъявляется специфическое требование – сохранять высокую твердость при повышенных температурах (до 500…600ºС), которые развиваются в режущей кромке при больших скоростях резания. Указанная способность стали называется ее теплостойкостью (или красностойкостью). По указанному критерию стали для режущего инструментаподразделяют на нетеплостойкие, полутеплостойкие, теплостойкие и повышенной теплостойкости . Две последние группы известны в технике под названием быстрорежущих сталей.

От штамповых сталей, помимо высокой твердости, требуется большая вязкость, так как штамповый инструмент работает в условиях ударного нагружения. Кроме того, инструмент для горячей штамповки, соприкасаясь с нагретыми металлическими заготовками, при длительной работе может разогреваться. Поэтому стали для горячей штамповки должны быть еще и теплостойкими.

Стали для измерительного инструмента помимо высокой износостойкости, обеспечивающей точность размеров в течение длительного срока службы, должны гарантировать стабильность размеров инструментов независимо от температурных условий эксплуатации. Другими словами, они должны иметь очень небольшое значение коэффициента теплового расширения.

Химические свойства веществ выявляются в разнообразных химических реакциях.

Превращения веществ, сопровождающиеся изменением их состава и (или) строения, называются химическими реакциями . Часто встречается и такое определение: химической реакцией называется процесс превращения исходных веществ (реагентов) в конечные вещества (продукты).

Химические реакции записываются посредством химических уравнений и схем, содержащих формулы исходных веществ и продуктов реакции. В химических уравнениях, в отличие от схем, число атомов каждого элемента одинаково в левой и правой частях, что отражает закон сохранения массы.

В левой части уравнения пишутся формулы исходных веществ (реагентов), в правой части — веществ, получаемых в результате протекания химической реакции (продуктов реакции, конечных веществ). Знак равенства, связывающий левую и правую часть, указывает, что общее количество атомов веществ, участвующих в реакции, остается постоянным. Это достигается расстановкой перед формулами целочисленных стехиометрических коэффициентов, показывающих количественные соотношения между реагентами и продуктами реакции.

Химические уравнения могут содержать дополнительные сведения об особенностях протекания реакции. Если химическая реакция протекает под влиянием внешних воздействий (температура, давление, излучение и т.д.), это указывается соответствующим символом, как правило, над (или «под») знаком равенства.

Огромное число химических реакций может быть сгруппировано в несколько типов реакций, которым присущи вполне определенные признаки.

В качестве классификационных признаков могут быть выбраны следующие:

1. Число и состав исходных веществ и продуктов реакции.

2. Агрегатное состояние реагентов и продуктов реакции.

3. Число фаз, в которых находятся участники реакции.

4. Природа переносимых частиц.

5. Возможность протекания реакции в прямом и обратном направлении.

6. Знак теплового эффекта разделяет все реакции на: экзотермические реакции, протекающие с экзо -эффектом — выделение энергии в форме теплоты (Q>0, ∆H <0):

С +О 2 = СО 2 + Q

и эндотермические реакции, протекающие с эндо -эффектом — поглощением энергии в форме теплоты (Q<0, ∆H >0):

N 2 +О 2 = 2NО — Q.

Такие реакции относят к термохимическим .

Рассмотрим более подробно каждый из типов реакций.

Классификация по числу и составу реагентов и конечных веществ

1. Реакции соединения

При реакциях соединения из нескольких реагирующих веществ относительно простого состава получается одно вещество более сложного состава:

Как правило, эти реакции сопровождаются выделением тепла, т.е. приводят к образованию более устойчивых и менее богатых энергией соединений.

Реакции соединения простых веществ всегда носят окислительно-восстановительный характер. Реакции соединения, протекающие между сложными веществами, могут происходить как без изменения валентности:

СаСО 3 + СО 2 + Н 2 О = Са(НСО 3) 2 ,

так и относиться к числу окислительно-восстановительных:

2FеСl 2 + Сl 2 = 2FеСl 3 .

2. Реакции разложения

Реакции разложения приводят к образованию нескольких соединений из одного сложного вещества:

А = В + С + D.

Продуктами разложения сложного вещества могут быть как простые, так и сложные вещества.

Из реакций разложения, протекающих без изменения валентных состояний, следует отметить разложение кристаллогидратов, оснований, кислот и солей кислородсодержащих кислот:

t o
4HNO 3 = 2H 2 O + 4NO 2 O + O 2 O.

2AgNO 3 = 2Ag + 2NO 2 + O 2 ,
(NH 4)2Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2 O.

Особенно характерны окислительно-восстановительные реакции разложения для солей азотной кислоты.

Реакции разложения в органической химии носят название крекинга :

С 18 H 38 = С 9 H 18 + С 9 H 20 ,

или дегидрирования

C 4 H 10 = C 4 H 6 + 2H 2 .

3. Реакции замещения

При реакциях замещения обычно простое вещество взаимодействует со сложным, образуя другое простое вещество и другое сложное:

А + ВС = АВ + С.

Эти реакции в подавляющем большинстве принадлежат к окислительно-восстановительным:

2Аl + Fe 2 O 3 = 2Fе + Аl 2 О 3 ,

Zn + 2НСl = ZnСl 2 + Н 2 ,

2КВr + Сl 2 = 2КСl + Вr 2 ,

2КСlO 3 + l 2 = 2KlO 3 + Сl 2 .

Примеры реакций замещения, не сопровождающихся изменением валентных состояний атомов, крайне немногочисленны. Следует отметить реакцию двуокиси кремния с солями кислородсодержащих кислот, которым отвечают газообразные или летучие ангидриды:

СаСО 3 + SiO 2 = СаSiO 3 + СО 2 ,

Са 3 (РО 4) 2 + ЗSiO 2 = ЗСаSiO 3 + Р 2 О 5 ,

Иногда эти реакции рассматривают как реакции обмена :

СН 4 + Сl 2 = СН 3 Сl + НСl.

4. Реакции обмена

Реакциями обмена называют реакции между двумя соединениями, которые обмениваются между собой своими составными частями:

АВ + СD = АD + СВ.

Если при реакциях замещения протекают окислительно-восстановительные процессы, то реакции обмена всегда происходят без изменения валентного состояния атомов. Это наиболее распространенная группа реакций между сложными веществами — оксидами, основаниями, кислотами и солями:

ZnO + Н 2 SО 4 = ZnSО 4 + Н 2 О,

AgNО 3 + КВr = АgВr + КNО 3 ,

СrСl 3 + ЗNаОН = Сr(ОН) 3 + ЗNаСl.

Частный случай этих реакций обмена — реакции нейтрализации :

НСl + КОН = КСl + Н 2 О.

Обычно эти реакции подчиняются законам химического равновесия и протекают в том направлении, где хотя бы одно из веществ удаляется из сферы реакции в виде газообразного, летучего вещества, осадка или малодиссоциирующего (для растворов) соединения:

NаНСО 3 + НСl = NаСl + Н 2 О + СО 2 ,

Са(НСО 3) 2 + Са(ОН) 2 = 2СаСО 3 ↓ + 2Н 2 О,

СН 3 СООNа + Н 3 РО 4 = СН 3 СООН + NаН 2 РО 4 .

5. Реакции переноса.

При реакциях переноса атом или группа атомов переходит от одной структурной единицы к другой:

АВ + ВС = А + В 2 С,

А 2 В + 2СВ 2 = АСВ 2 +АСВ 3 .

Например:

2AgCl + SnCl 2 = 2Ag + SnCl 4 ,

H 2 O + 2NO 2 = HNO 2 + HNO 3 .

Классификация реакций по фазовым признакам

В зависимости от агрегатного состояния реагирующих веществ различают следующие реакции:

1. Газовые реакции

H 2 + Cl 2 2HCl.

2. Реакции в растворах

NaОН(р-р) + НСl(p-p) = NaСl(p-p) + Н 2 О(ж)

3. Реакции между твердыми веществами

t o
СаО(тв) +SiO 2 (тв) = СаSiO 3 (тв)

Классификация реакций по числу фаз.

Под фазой понимают совокупность однородных частей системы с одинаковыми физическими и химическими свойствами и отделенных друг от друга поверхностью раздела.

Все многообразие реакций с этой точки зрения можно разделить на два класса:

1.Гомогенные (однофазные) реакции. К ним относят реакции, протекающие в газовой фазе, и целый ряд реакций, протекающих в растворах.

2.Гетерогенные (многофазные) реакции. К ним относят реакции, в которых реагенты и продукты реакции находятся в разных фазах. Например:

газожидкофазные реакции

CO 2 (г) + NaOH(p-p) = NaHCO 3 (p-p).

газотвердофазные реакции

СO 2 (г) + СаО(тв) = СаСO 3 (тв).

жидкотвердофазные реакции

Na 2 SO 4 (р-р) + ВаСl 3 (р-р) = ВаSО 4 (тв)↓ + 2NaСl(p-p).

жидкогазотвердофазные реакции

Са(НСО 3) 2 (р-р) + Н 2 SО 4 (р-р) = СО 2 (r) +Н 2 О(ж) + СаSО 4 (тв)↓.

Классификация реакций по типу переносимых частиц

1. Протолитические реакции.

К протолитическим реакциям относят химические процессы, суть которых заключается в переносе протона от одних реагирующих веществ к другим.

В основе этой классификации лежит протолитическая теория кислот и оснований, в соответствии с которой кислотой считают любое вещество, отдающее протон, а основанием — вещество, способное присоединять протон, например:

К протолитическим реакциям относят реакции нейтрализации и гидролиза.

2. Окислительно-восстановительные реакции.

К таковым относят реакции, в которых реагирующие вещества обмениваются электронами, изменяя при этом степени окисления атомов элементов, входящих в состав реагирующих веществ. Например:

Zn + 2H + → Zn 2 + + H 2 ,

FeS 2 + 8HNO 3 (конц) = Fe(NO 3) 3 + 5NO + 2H 2 SO 4 + 2H 2 O,

Подавляющее большинство химических реакций относятся к окислительно-восстановительным, они играют исключительно важную роль.

3. Лиганднообменные реакции.

К таковым относят реакции, в ходе которых происходит перенос электронной пары с образованием ковалентной связи по донорно-акцепторному механизму. Например:

Cu(NO 3) 2 + 4NH 3 = (NO 3) 2 ,

Fe + 5CO = ,

Al(OH) 3 + NaOH = .

Характерной особенностью лиганднообменных реакций является то, что образование новых соединений, называемых комплексными, происходит без изменения степени окисления.

4. Реакции атомно-молекулярного обмена.

К данному типу реакций относятся многие из изучаемых в органической химии реакций замещения, протекающие по радикальному, электрофильному или нуклеофильному механизму.

Обратимые и необратимые химические реакции

Обратимыми называют такие химические процессы, продукты которых способны реагировать друг с другом в тех же условиях, в которых они получены, с образованием исходных веществ.

Для обратимых реакций уравнение принято записывать следующим образом:

Две противоположно направленные стрелки указывают на то, что при одних и тех же условиях одновременно протекает как прямая, так и обратная реакция, например:

СН 3 СООН + С 2 Н 5 ОН СН 3 СООС 2 Н 5 + Н 2 О.

Необратимыми называют такие химические процессы, продукты которых не способны реагировать друг с другом с образованием исходных веществ. Примерами необратимых реакций может служить разложение бертолетовой соли при нагревании:

2КСlО 3 → 2КСl + ЗО 2 ,

или окисление глюкозы кислородом воздуха:

С 6 Н 12 О 6 + 6О 2 → 6СО 2 + 6Н 2 О.

Химические реакции следует отличать от ядерных реакций. В результате химических реакций общее число атомов каждого химического элемента и его изотопный состав не меняются. Иное дело ядерные реакции - процессы превращения атомных ядер в результате их взаимодействия с другими ядрами или элементарными частицами, например превращение алюминия в магний:


27 13 Аl + 1 1 Н = 24 12 Мg + 4 2 Не


Классификация химических реакций многопланова, то есть в ее основу могут быть положены различные признаки. Но под любой из таких признаков могут быть отнесены реакции как между неорганическими, так и между органическими веществами.


Рассмотрим классификацию химических реакций по различным признакам.

I. По числу и составу реагирующих веществ

Реакции, идущие без изменения состава веществ.


В неорганической химии к таким реакциям можно отнести процессы получения аллотропных модификаций одного химического элемента, например:


С (графит) ↔ С (алмаз)
S (ромбическая) ↔ S (моноклинная)
Р (белый) ↔ Р (красный)
Sn (белое олово) ↔ Sn (серое олово)
3O 2 (кислород) ↔ 2O 3 (озон)


В органической химии к этому типу реакций могут быть отнесены реакции изомеризации, которые идут без изменения не только качественного, но и количественного состава молекул веществ, например:


1. Изомеризация алканов.


Реакция изомеризации алканов имеет большое практическое значение, так как углеводороды изостроения обладают меньшей способностью к детонации.


2. Изомеризация алкенов.


3. Изомеризация алкинов (реакция А. Е. Фаворского).


CH 3 - CH 2 - С= - СН ↔ СН 3 - С= - С- СН 3

этилацетилен диметнлацетилен


4. Изомеризация галогеналканов (А. Е. Фаворский, 1907 г.).

5. Изомеризация цианита аммония при нагревании.



Впервые мочевина была синтезирована Ф. Велером в 1828 г. изомеризацией цианата аммония при нагревании.

Реакции, идущие с изменением состава вещества

Можно выделить четыре типа таких реакций: соединения, разложения, замещения и обмена.


1. Реакции соединения - это такие реакции, при которых из двух и более веществ образуется одно сложное вещество


В неорганической химии все многообразие реакций соединения можно рассмотреть, например, на примере реакций получения серной кислоты из серы:


1. Получение оксида серы (IV):


S + O 2 = SO - из двух простых веществ образуется одно сложное.


2. Получение оксида серы (VI):


SO 2 + 0 2 → 2SO 3 - из простого и сложного веществ образуется одно сложное.


3. Получение серной кислоты:


SO 3 + Н 2 O = Н 2 SO 4 - из двух сложных веществ образуется одно сложное.


Примером реакции соединения, при которой одно сложное вещество образуется из более чем двух исходных, может служить заключительная стадия получения азотной кислоты:


4NО 2 + O 2 + 2Н 2 O = 4НNO 3


В органической химии реакции соединения принято называть «реакциями присоединения». Все многообразие таких реакций можно рассмотреть на примере блока реакций, характеризующих свойства непредельных веществ, например этилена:


1. Реакция гидрирования - присоединения водорода:


CH 2 =CH 2 + Н 2 → Н 3 -СН 3

этен → этан


2. Реакция гидратации - присоединения воды.


3. Реакция полимеризации.


2. Реакции разложения - это такие реакции, при которых из одного сложного вещества образуется несколько новых веществ.


В неорганической химии все многообразие таких реакций можно рассмотреть на блоке реакций получения кислорода лабораторными способами:


1. Разложение оксида ртути(II) - из одного сложного вещества образуются два простых.


2. Разложение нитрата калия - из одного сложного вещества образуются одно простое и одно сложное.


3. Разложение перманганата калия - из одного сложного вещества образуются два сложных и одно простое, то есть три новых вещества.


В органической химии реакции разложения можно рассмотреть на блоке реакций получения этилена в лаборатории и в промышленности:


1. Реакция дегидратации (отщепления воды) этанола:


С 2 H 5 OH → CH 2 =CH 2 + H 2 O


2. Реакция дегидрирования (отщепление водорода) этана:


CH 3 -CH 3 → CH 2 =CH 2 + H 2


или СН 3 -СН 3 → 2С + ЗН 2


3. Реакция крекинга (расщепления) пропана:


CH 3 -СН 2 -СН 3 → СН 2 =СН 2 + СН 4


3. Реакции замещения - это такие реакции, в результате которых атомы простого вещества замещают атомы какого-нибудь элемента в сложном веществе.


В неорганической химии примером таких процессов может служить блок реакций, характеризующих свойства, например, металлов:


1. Взаимодействие щелочных или щелочноземельных металлов с водой:


2Na + 2Н 2 O = 2NаОН + Н 2


2. Взаимодействие металлов с кислотами в растворе:


Zn + 2НСl = ZnСl 2 + Н 2


3. Взаимодействие металлов с солями в растворе:


Fе + СuSO 4 = FеSO 4 + Сu


4. Металлотермия:


2Аl + Сr 2 O 3 → Аl 2 O 3 + 2Сr


Предметом изучения органической химии являются не простые вещества, а только соединения. Поэтому как пример реакции замещения приведем наиболее характерное свойство предельных соединений, в частности метана, - способность его атомов водорода замещаться на атомы галогена. Другой пример - бромирование ароматического соединения (бензола, толуола, анилина).



С 6 Н 6 + Вr 2 → С 6 Н 5 Вr + НВr

бензол → бромбензол


Обратим внимание на особенность реакции замещения у органических веществ: в результате таких реакций образуются не простое и сложное вещество, как в неорганической химии, а два сложных вещества.


В органической химии к реакциям замещения относят и некоторые реакции между двумя сложными веществами, например нитрование бензола. Она формально является реакцией обмена. То, что это реакция замещения, становится понятным только при рассмотрении ее механизма.


4. Реакции обмена - это такие реакции, при которых два сложных вещества обмениваются своими составными частями


Эти реакции характеризуют свойства электролитов и в растворах протекают по правилу Бертолле, то есть только в том случае, если в результате образуется осадок, газ или малодиссоциирующее вещество (например, Н 2 O).


В неорганической химии это может быть блок реакций, характеризующих, например, свойства щелочей:


1. Реакция нейтрализации, идущая с образованием соли и воды.


2. Реакция между щелочью и солью, идущая с образованием газа.


3. Реакция между щелочью и солью, идущая с образованием осадка:


СuSO 4 + 2КОН = Сu(ОН) 2 + К 2 SO 4


или в ионном виде:


Сu 2+ + 2OН - = Сu(ОН) 2


В органической химии можно рассмотреть блок реакций, характеризующих, например, свойства уксусной кислоты:


1. Реакция, идущая с образованием слабого электролита - Н 2 O:


СН 3 СООН + NаОН → Nа(СН3СОО) + Н 2 O


2. Реакция, идущая с образованием газа:


2СН 3 СООН + СаСO 3 → 2СН 3 СОО + Са 2+ + СO 2 + Н 2 O


3. Реакция, идущая с образованием осадка:


2СН 3 СООН + К 2 SO 3 → 2К(СН 3 СОО) + Н 2 SO 3



2СН 3 СООН +SiO → 2СН 3 СОО + Н 2 SiO 3

II. По изменению степеней окисления химических элементов, образующих вещества

По этому признаку различают следующие реакции:


1. Реакции, идущие с изменением степеней окисления элементов, или окислительно-восстановительные реакции.


К ним относится множество реакций, в том числе все реакции замещения, а также те реакции соединения и разложения, в которых участвует хотя бы одно простое вещество, например:

1. Mg 0 + H + 2 SO 4 = Mg +2 SO 4 + H 2



2. 2Mg 0 + O 0 2 = Mg +2 O -2



Сложные окислительно-восстановительные реакции составляются с помощью метода электронного баланса.


2KMn +7 O 4 + 16HCl - = 2KCl - + 2Mn +2 Cl - 2 + 5Cl 0 2 + 8H 2 O



В органической химии ярким примером окислительно-восстановительных реакций могут служить свойства альдегидов.


1. Они восстанавливаются в соответствующие спирты:




Альдекиды окисляются в соответствующие кислоты:




2. Реакции, идущие без изменения степеней окисления химических элементов.


К ним, например, относятся все реакции ионного обмена, а также многие реакции соединения, многие реакции разложения, реакции этерификации:


НСООН + CHgOH = НСООСН 3 + H 2 O

III. По тепловому эффекту

По тепловому эффекту реакции делят на экзотермические и эндотермические.


1. Экзотермические реакции протекают с выделением энергии.


К ним относятся почти все реакции соединения. Редкое исключение составляют эндотермические реакции синтеза оксида азота(II) из азота и кислорода и реакция газообразного водорода с твердым иодом.


Экзотермические реакции, которые протекают с выделением света, относят к реакциям горения. Гидрирование этилена - пример экзотермической реакции. Она идет при комнатной температуре.


2. Эндотермические реакции протекают с поглощением энергии.


Очевидно, что к ним будут относиться почти все реакции разложения, например:


1. Обжиг известняка


2. Крекинг бутана


Количество выделенной или поглощенной в результате реакции энергии называют тепловым эффектом реакции, а уравнение химической реакции с указанием этого эффекта называют термохимическим уравнением:


Н 2(г) + С 12(г) = 2НС 1(г) + 92,3 кДж


N 2(г) + O 2(г) = 2NO(г) - 90,4 кДж

IV. По агрегатному состоянию реагирующих веществ (фазовому составу)

По агрегатному состоянию реагирующих веществ различают:


1. Гетерогенные реакции - реакции, в которых реагирующие вещества и продукты реакции находятся в разных агрегатных состояниях (в разных фазах).


2. Гомогенные реакции - реакции, в которых реагирующие вещества и продукты реакции находятся в одном агрегатном состоянии (в одной фазе).

V. По участию катализатора

По участию катализатора различают:


1. Некаталитические реакции, идущие без участия катализатора.


2. Каталитические реакции, идущие с участием катализатора. Так как все биохимические реакции, протекающие в клетках живых организмов, идут с участием особых биологических катализаторов белковой природы - ферментов, все они относятся к каталитическим или, точнее, ферментативным. Следует отметить, что более 70% химических производств используют катализаторы.

VI. По направлению

По направлению различают:


1. Необратимые реакции протекают в данных условиях только в одном направлении. К ним можно отнести все реакции обмена, сопровождающиеся образованием осадка, газа или малодиссоциирующего вещества (воды) и все реакции горения.


2. Обратимые реакции в данных условиях протекают одновременно в двух противоположных направлениях. Таких реакций подавляющее большинство.


В органической химии признак обратимости отражают названия - антонимы процессов:


Гидрирование - дегидрирование,


Гидратация - дегидратация,


Полимеризация - деполимеризация.


Обратимы все реакции этерификации (противоположный процесс, как вы знаете, носит название гидролиза) и гидролиза белков, сложных эфиров, углеводов, полинуклеотидов. Обратимость этих процессов лежит в основе важнейшего свойства живого организма - обмена веществ.

VII. По механизму протекания различают:

1. Радикальные реакции идут между образующимися в ходе реакции радикалами и молекулами.


Как вы уже знаете, при всех реакциях происходит разрыв старых и образование новых химических связей. Способ разрыва связи в молекулах исходного вещества определяет механизм (путь) реакции. Если вещество образовано за счет ковалентной связи, то могут быть два способа разрыва этой связи: гемолитический и гетеролитический. Например, для молекул Сl 2 , СН 4 и т. д. реализуется гемолитический разрыв связей, он приведет к образованию частиц с неспаренными электронами, то есть свободных радикалов.


Радикалы чаще всего образуются, когда разрываются связи, при которых общие электронные пары распределены между атомами примерно одинаково (неполярная ковалентная связь), однако многие полярные связи также могут разрываться подобным же образом, в частности тогда, когда реакция проходит в газовой фазе и под действием света, как, например, в случае рассмотренных выше процессов - взаимодействия С 12 и СН 4 - . Радикалы очень реакционноспособны, так как стремятся завершить свой электронный слой, забрав электрон у другого атома или молекулы. Например, когда радикал хлора сталкивается с молекулой водорода, то он вызывает разрыв общей электронной пары, связывающей атомы водорода, и образует ковалентную связь с одним из атомов водорода. Второй атом водорода, став радикалом, образует общую электронную пару с неспаренным электроном атома хлора из разрушающейся молекулы Сl 2 , в результате чего возникает радикал хлора, который атакует новую молекулу водорода и т. д


Реакции, представляющие собой цепь последовательных превращений, называют цепными реакциями. За разработку теории цепных реакций два выдающихся химика - наш соотечественник Н. Н. Семенов и англичанин С. А. Хиншелвуд были удостоены Нобелевской премии.
Аналогично протекает и реакция замещения между хлором и метаном:



По радикальному механизму протекают большинство реакций горения органических и неорганических веществ, синтез воды, аммиака, полимеризация этилена, винилхлорида и др.

2. Ионные реакции идут между уже имеющимися или образующимися в ходе реакции ионами.

Типичные ионные реакции - это взаимодействие между электролитами в растворе. Ионы образуются не только при диссоциации электролитов в растворах, но и под действием электрических разрядов, нагревания или излучений. γ-Лучи, например, превращают молекулы воды и метана в молекулярные ионы.


По другому ионному механизму происходят реакции присоединения к алкенам галогеноводородов, водорода, галогенов, окисление и дегидратация спиртов, замещение спиртового гидроксила на галоген; реакции, характеризующие свойства альдегидов и кислот. Ионы в этом случае образуются при гетеролитическом разрыве ковалентных полярных связей.

VIII. По виду энергии,

инициирующей реакцию, различают:


1. Фотохимические реакции. Их инициирует световая энергия. Кроме рассмотренных выше фотохимических процессов синтеза НСl или реакции метана с хлором, к ним можно отнести получение озона в тропосфере как вторичного загрязнителя атмосферы. В роли первичного в этом случае выступает оксид азота(IV), который под действием света образует радикалы кислорода. Эти радикалы взаимодействуют с молекулами кислорода, в результате чего получается озон.


Образование озона идет все время, пока достаточно света, так как NO может взаимодействовать с молекулами кислорода с образованием того же NO 2 . Накопление озона и других вторичных загрязнителей атмосферы может привести к появлению фотохимического смога.


К этому виду реакций принадлежит и важнейший процесс, протекающий в растительных клетках, - фотосинтез, название которого говорит само за себя.


2. Радиационные реакции. Они инициируются излучениями большой энергии - рентгеновскими лучами, ядерными излучениями (γ-лучами, а-частицами - Не 2+ и др.). С помощью радиационных реакций проводят очень быструю радиополимеризацию, радиолиз (радиационное разложение) и т. д.


Например, вместо двухстадийного получения фенола из бензола его можно получать взаимодействием бензола с водой под действием радиационных излучений. При этом из молекул воды образуются радикалы [ OН] и [ H ], с которыми и реагирует бензол с образованием фенола:


С 6 Н 6 + 2[ОН] → С 6 Н 5 ОН + Н 2 O


Вулканизация каучука может быть проведена без серы с использованием радиовулканизации, и полученная резина будет ничуть не хуже традиционной.


3. Электрохимические реакции. Их инициирует электрический ток. Помимо хорошо известных вам реакций электролиза укажем также реакции электросинтеза, например, реакции промышленного получения неорганических окислителей


4. Термохимические реакции. Их инициирует тепловая энергия. К ним относятся все эндотермические реакции и множество экзотермических реакций, для начала которых необходима первоначальная подача теплоты, то есть инициирование процесса.


Рассмотренная выше классификация химических реакций отражена на схеме.


Классификация химических реакций, как и все другие классификации, условна. Ученые договорились разделить реакции на определенные типы по выделенным ими признакам. Но большинство химических превращений можно отнести к разным типам. Например, составим характеристику процесса синтеза аммиака.


Это реакция соединения, окислительно-восстановительная, экзотермическая, обратимая, каталитическая, гетерогенная (точнее, гетерогенно-каталитическая), протекающая с уменьшением давления в системе. Для успешного управления процессом необходимо учитывать все приведенные сведения. Конкретная химическая реакция всегда многокачественна, ее характеризуют разные признаки.


ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС И ЕГО СОДЕРЖАНИЕ

Химико-технологический процесс представляет собой совокупность операций, позволяющих получить целевой продукт из исходного сырья. Все эти операции входят в состав трех основных стадий, характерных практически для каждого химико-технологического процесса.

На первой стадии проводят операции, необходимые для подготовки исходных реагентов к проведению химической реакции. Реагенты переводят, в частности, в наиболее реакционноспособное состояние. Например, известно, что скорость химических реакций сильно зависит от температуры, поэтому часто реагенты до проведения реакции нагревают. Газообразное сырье для повышения эффективности процесса и уменьшения размеров аппаратуры подвергают компримированию до определенного давления. Чтобы устранить побочные явления и получить продукт высокого качества, исходное сырье подвергают очистке от посторонних примесей, пользуясь методами, основанными на различии физических свойств (растворимость в различных растворителях, плотность, температуры конденсации и кристаллизации и т. д.). При очистке сырья и реакционных смесей широко применяют явления тепло- и массообмена, гидромеханические процессы. Могут быть использованы и химические методы очистки, основанные на химических реакциях, в результате которых ненужные примеси превращаются в легко отделимые вещества.

Соответствующим образом подготовленные реагенты на следующей стадии подвергают химическому взаимодействию, которое может состоять из нескольких этапов. В промежутках между этими этапами иногда необходимо вновь использовать тепломассообменные и другие физические процессы. Например, при производстве серной кислоты диоксид серы частично окисляют до триоксида, затем реакционную смесь охлаждают, извлекают из нее путем абсорбции триоксид серы и вновь направляют ее на окисление.

В результате химических реакций получают смесь продуктов (целевых, побочных, попутных) и не прореагировавших реагентов. Заключительные операции последней стадии связаны с разделением этой смеси, для чего вновь применяют гидромеханические, тепло- и массообменные процессы, например: фильтрование, центрифугирование, ректификацию, абсорбцию, экстракцию и т. д. Продукты реакции направляют на склад готовой продукции или на дальнейшую переработку; не прореагировавшее сырье вновь используют в процессе, организуя его рецикл.

На всех этапах, а особенно на заключительных, проводят также рекуперацию вторичных материальных и энергетических ресурсов. Потоки газообразных и жидких веществ, попадающих в окружающую среду, подвергают очистке и обезвреживанию от опасных примесей. Твердые отходы либо направляют на дальнейшую переработку, либо размещают для хранения в безопасных для окружающей среды условиях.

Таким образом, химико-технологический процесс в целом – это сложная система, состоящая из единичных связанных между собой процессов (элементов) и взаимодействующая с окружающей средой.

Элементами химико-технологической системы являются перечисленные выше процессы тепло- и массообмена, гидромеханические, химические и т. д. Их рассматривают как единичные процессы химической технологии.

Важной подсистемой сложного химико-технологического процесса является химический процесс.

Химический процесс представляет собой одну или несколько химических реакций, сопровождаемых явлениями переноса теплоты, массы и импульса, оказывающих влияние как друг на друга, так и на протекание химической реакции.

Анализ единичных процессов, их взаимного влияния позволяет разработать технологический режим.

Технологическим режимом называется совокупность технологических параметров (температуры, давления, концентраций реагентов и т. д.), определяющих условия работы аппарата или системы аппаратов (технологической схемы).

Оптимальные условия ведения процесса – это сочетание основных параметров (температуры, давления, состава исходной реакционной смеси и т. д.), позволяющее получить наибольший выход продукта с высокой скоростью или обеспечить наименьшую себестоимость при соблюдении условий рационального использования сырья и энергии и минимизации возможного ущерба окружающей среде.

Единичные процессы протекают в различных аппаратах – химических реакторах, абсорбционных и ректификационных колоннах, теплообменниках и т. д. Отдельные аппараты соединены в технологическую схему процесса.

Технологическая схема – рационально построенная система единичных аппаратов, соединенных различными видами связей (прямых, обратных, последовательных, параллельных), позволяющая получить заданный продукт заданного качества из природного сырья или полуфабрикатов.

Технологические схемы бывают открытыми и закрытыми, могут содержать байпасные (обводные) потоки и рециклы, позволяющие повышать эффективность функционирования химико-технологической системы в целом.

Разработка и построение рациональной технологической схемы – важная задача химической технологии.

Классификация химических реакций, лежащих в основе промышленных химико-технологических процессов

В современной химии известно большое число различных химических реакций. Многие из них осуществляются в промышленных химических реакторах и, следовательно, становятся объектом изучения химической технологии.

Чтобы облегчить изучение близких по природе явлений, в науке принято их классифицировать по общим признакам. В зависимости от того, какие признаки взяты при этом за основу, существует несколько видов классификации химических реакций.

Важным видом классификации является классификация по механизму осуществления реакции. Различают простые (одностадийные) и сложные (многостадийные) реакции, в частности параллельные, последовательные и последовательно-параллельные.

Простыми называют реакции, для осуществления которых требуется преодоление лишь одного энергетического барьера (одна стадия).

Сложные реакции включают в себя несколько параллельных или последовательных стадий (простых реакций).

Реальные одностадийные реакции встречаются чрезвычайно редко. Однако некоторые сложные реакции, проходящие через ряд промежуточных стадий, удобно считать формально простыми. Это возможно в тех случаях, когда промежуточные продукты реакции в условиях рассматриваемой задачи не обнаруживаются.

Классификация реакций по молекулярности учитывает, сколько молекул участвует в элементарном акте реакции; различают моно-, би- и тримолекулярные реакции.

Вид кинетического уравнения (зависимости скорости реакции от концентраций реагентов) позволяет проводить классификацию по порядку реакции. Порядком реакции называется сумма показателей степеней у концентраций реагентов в кинетическом уравнении. Существуют реакции первого, второго, третьего, дробного порядков.

Химические реакции различают также по тепловому эффекту. При протекании экзотермических реакций, сопровождающихся выделением теплоты (Q > 0), происходит уменьшение энтальпии реакционной системы (∆H < 0); при протекании эндотермических реакций, сопровождающихся поглощением теплоты (Q < 0), происходит увеличение энтальпии реакционной системы (∆H > 0).

Для выбора конструкции химического реактора и способов управления проведением процесса существенное значение имеет фазовый состав реакционной системы.

В зависимости от того, сколько (одну или несколько) фаз образуют исходные реагенты и продукты реакции, химические реакции делят на гомофазные и гетерофазные.

Гомофазными называют реакции, в которых исходные реагенты, стабильные промежуточные вещества и продукты реакции находятся в пределах одной фазы.

Гетерофазными называют реакции, в которых исходные реагенты, стабильные промежуточные вещества и продукты реакции образуют более чем одну фазу.

В зависимости от зоны протекания реакции делятся на гомогенные и гетерогенные реакции.

Понятия «гомогенная» и «гетерогенная» реакции не совпадают с понятиями «гомофазный» и «гетерофазный» процессы. Гомогенность и гетерогенность реакции отражает в определенной степени ее механизм: протекает ли реакция в объеме какой-то одной фазы или на поверхности раздела фаз. Гомофазность и гетерофазность процесса позволяют лишь судить о фазовом составе участников реакции.

В случае гомогенных реакций реагенты и продукты находятся в одной фазе (жидкой или газообразной) и реакция протекает в объеме этой фазы. Например, окисление оксида азота кислородом воздуха в производстве азотной кислоты – газофазная реакция, а реакции этерификации (получение эфиров из органических кислот и спиртов) – жидкофазные.

При протекании гетерогенных реакций, по меньшей мере, один из реагентов или продуктов находится в фазовом состоянии, отличающемся от фазового состояния остальных участников, и при ее анализе обязательно должна учитываться поверхность раздела фаз. Например, нейтрализация кислоты щелочью – это гомофазный гомогенный процесс. Каталитический синтез аммиака – это гомофазный гетерогенный процесс. Окисление углеводородов в жидкой фазе газообразным кислородом представляет собой гетерофазный процесс, но протекающая химическая реакция является гомогенной. Гашение извести СаО + Н 2 О Са(ОН) 2 , при котором, все три участника реакции образуют отдельные фазы, а реакция идет на границе раздела воды и оксида кальция, является гетерофазным гетерогенным процессом.

В зависимости от того, применяются или не применяются для изменения скорости реакции специальные вещества – катализаторы, различают каталитические и некаталитические реакции и соответственно химико-технологические процессы. Подавляющее большинство химических реакций, на которых основаны промышленные химико-технологические процессы, – это каталитические реакции.