The strongest metal in the world. What is the hardest metal on earth? The most expensive steel in the world

When they talk about the strongest metals in the world, I immediately remember a medieval knight with a sword at the ready and in armor made of the legendary Damascus steel. It is this that many rightly consider to be the hardest, most durable, resistant to mechanical or chemical influences. But steel is not pure metal; it consists of several components that have been processed to change the final properties of the finished product. Consequently, it cannot be called a substance with the highest hardness. What metal is the strongest on the planet?

10 Titan

Titanium is in 10th position in our ranking of the strongest metals in the world. It is a high-strength, silver-colored, low-density solid. Titanium is resistant to high temperatures, it does not corrode, is resistant to chemicals and is not afraid of mechanical damage. It is possible to melt titanium only at temperatures above 3200 degrees, and it boils when heated to a temperature of 3300 degrees. The scope of application of this metal is wide and varied - from the military industry to medicine.

Titanium was discovered by English and German chemists in the 18th century, and they named it in honor of the Titans - giant mythical creatures with unprecedented strength and other supernatural abilities.

For a long time, titanium was not used for industrial purposes, since they could not bypass the natural fragility of this metal. It was possible to obtain it in its pure form only in the winter of 1925

9

Uranium takes 9th place in the Top 10. Its distinctive feature is weak radioactivity. Uranium occurs in nature both in pure form and as a component of sedimentary rocks. Among the main properties of this metal, it is necessary to highlight good flexibility and malleability, ductility, which allows it to be used in various industries.

Uranium alloys subjected to heat treatment are characterized by high resistance to corrosion; products made from them do not change shape due to temperature changes. That is why this metal was used to make tool steel until the mid-30s of the last century, but later this technology was abandoned.

8

Tungsten is in 8th place in our ranking. This metal has amazing, unparalleled refractory properties. It boils at an incredibly high temperature - 5900 degrees. And this hard silver-gray metal with a characteristic shine is not afraid of even the most aggressive chemicals, easily takes shape during the forging process and is able to stretch into the thinnest thread without breaking. Tungsten filament - every person has heard and seen it. So this thread is made from tungsten.

From German the word “tungsten” is translated as “wolf foam”
The metal was discovered by Swedish chemist Carl Scheele in 1781

7 Rhenium

This silvery-white transition metal belongs to the expensive category, it is indispensable in the manufacturing process of modern electronics and technology. Rhenium was awarded the title of one of the most durable metals in the world due to its hardness and density, which do not decrease even under the influence of temperature changes. Rhenium is refractory and is produced from molybdenum and copper ore. This process is quite complex and labor-intensive, which explains the high cost of the finished metal. To obtain 1 kg of rhenium, 2 thousand tons of ore are needed; the finished production of this metal is no more than 40 tons per year.

Rhenium was invented by famous German chemists Ida and Walter Noddack, and they named it in honor of the picturesque Rhine River.

6 Osmium

The 6th position in our rating is given to osmium, the strongest metal in the world, belonging to the platinum group and characterized by incredible density. By analogy with most platinum metals, osmium is refractory and hard, but at the same time it is fragile; is not afraid of mechanical damage and exposure to aggressive substances.

A distinctive feature of osmium is its silvery-white color with a barely noticeable bluish tint and a rather unpleasant odor (something reminiscent of a combination of garlic and bleach). This metal is not found in its pure form in nature; very rarely it can be found in conjunction with iridium, and even then only in some areas of Siberia, Canada, the USA and South Africa. Osmium is scarce, so it is extremely expensive and is used only where the enormous investment in its extraction is justified. This metal is used in electronics, the space and chemical industries, and surgery. It is the main component in the production of a rare drug - cortisone.

Osmium is the most expensive metal in the world. The price for 1 gram can reach 200 thousand dollars.

5

Beryllium has a light gray color and is characterized by hardness, fire resistance, good thermal conductivity and toxicity. The metal is mined from rocks and is widely used by modern science. It is indispensable in the aerospace industry and aviation, in nuclear energy and in metallurgy.

4


Chromium is the most common of the hardest metals in the world, products made from

which is sure to be found in every home. It is durable, resistant to aggressive environments, has a soft blue color and a characteristic shine. Chromium is widely distributed in nature in the form of chromium iron ore, it is used in almost all industries, and is added to other metals to give them additional hardness, corrosion resistance and improve their appearance. Chrome-plated parts of interior items, plumbing fixtures and household appliances become an excellent decoration for every home.

The melting point of chromium is 1907 degrees, it boils at a temperature of 2671 degrees. In its pure form, chromium is very viscous and viscous, but in combination with oxygen it becomes brittle and extremely hard.

3

Tantalum is in 3rd place in our ranking; it is worthy of a “bronze medal” as one of the most durable metals on the planet. Tantalum has a silvery color with a characteristic lead-like luster, is characterized by increased hardness and amazing density. Along with refractoriness, strength, resistance to rust and aggressive chemical attack, this metal is characterized by ductility. It is easily machined, which is highly valued in the chemical industry and metallurgy. The metal is indispensable during the construction of nuclear reactors; it is the main element of heat-resistant alloys.

2 Ruthenium

Ruthenium is silver in color and is characterized by a unique feature - the presence of fragments of muscle tissue of living beings. According to scientists, it was this unusual composition that influenced the properties of the metal and made it super-strong.
Ruthenium is not only strong and hard, it is also chemically stable, can form complex compounds and plays the role of a catalyst for chemical reactions. The properties of this metal described above make it indispensable in the manufacture of various wiring and contacts, and laboratory glassware. The metal is also in demand in jewelry. As for the production of ruthenium itself, it is almost entirely concentrated in the Republic of South Africa.

Our world is full of amazing facts that are interesting to many people. The properties of various metals are no exception. Among these elements, of which there are 94 in the world, there are the most ductile and malleable, and there are also those with high electrical conductivity or a high resistance coefficient. This article will talk about the hardest metals, as well as their unique properties.

Iridium ranks first in the list of metals that are distinguished by the greatest hardness. It was discovered at the beginning of the 19th century by the English chemist Smithson Tennant. Iridium has the following physical properties:

  • has a silvery-white color;
  • its melting point is 2466 o C;
  • boiling point – 4428 o C;
  • resistance – 5.3·10−8Ohm·m.

Because iridium is the hardest metal on the planet, it is difficult to process. But it is still used in various industrial fields. For example, it is used to make small balls that are used in pen nibs. Iridium is used to make components for space rockets, some parts for cars, and more.

Very little iridium occurs in nature. Findings of this metal are a kind of evidence that meteorites fell in the place where it was discovered. These cosmic bodies contain significant amounts of metal. Scientists believe that our planet is also rich in iridium, but its deposits are closer to the Earth's core.

The second position on our list goes to ruthenium. The discovery of this inert silvery metal belongs to the Russian chemist Karl Klaus, which was made in 1844. This element belongs to the platinum group. It is a rare metal. Scientists have been able to establish that there is approximately 5 thousand tons of ruthenium on the planet. It is possible to extract approximately 18 tons of metal per year.

Due to its limited quantity and high cost, ruthenium is rarely used in industry. It is used in the following cases:

  • a small amount of it is added to titanium to improve corrosion properties;
  • its alloy with platinum is used to make electrical contacts that are highly resistant;
  • ruthenium is often used as a catalyst for chemical reactions.

A metal called tantalum, discovered in 1802, takes third place on our list. It was discovered by the Swedish chemist A. G. Ekeberg. For a long time it was believed that tantalum is identical to niobium. But the German chemist Heinrich Rose managed to prove that these are two different elements. Scientist Werner Bolton from Germany was able to isolate tantalum in its pure form in 1922. This is a very rare metal. The largest deposits of tantalum ore were discovered in Western Australia.

Due to its unique properties, tantalum is a highly sought-after metal. It is used in various fields:

  • in medicine, tantalum is used to make wire and other elements that can hold tissue together and even act as a bone substitute;
  • alloys with this metal are resistant to aggressive environments, which is why they are used in the manufacture of aerospace equipment and electronics;
  • tantalum is also used to create energy in nuclear reactors;
  • the element is widely used in the chemical industry.

Chromium is one of the hardest metals. It was discovered in Russia in 1763 in a deposit in the Northern Urals. It has a bluish-white color, although there are cases where it is considered a black metal. Chrome cannot be called a rare metal. The following countries are rich in its deposits:

  • Kazakhstan;
  • Russia;
  • Madagascar;
  • Zimbabwe.

There are chromium deposits in other countries as well. This metal is widely used in various branches of metallurgy, science, mechanical engineering and others.

The fifth position in the list of the hardest metals goes to beryllium. Its discovery belongs to the chemist Louis Nicolas Vauquelin from France, which was made in 1798. This metal has a silvery-white color. Despite its hardness, beryllium is a brittle material, which makes it very difficult to process. It is used to create high-quality loudspeakers. It is used to create jet fuel and refractory materials. The metal is widely used in the creation of aerospace technology and laser systems. It is also used in nuclear energy and in the manufacture of X-ray equipment.

The list of the hardest metals also includes osmium. It is an element belonging to the platinum group, and its properties are similar to iridium. This refractory metal is resistant to aggressive environments, has a high density, and is difficult to process. It was discovered by the scientist Smithson Tennant from England in 1803. This metal is widely used in medicine. Elements of pacemakers are made from it, and it is also used to create the pulmonary valve. It is also widely used in the chemical industry and for military purposes.

The transition silver metal rhenium takes the seventh position on our list. The assumption about the existence of this element was made by D.I. Mendeleev in 1871, and chemists from Germany managed to discover it in 1925. Just 5 years after this, it was possible to establish the extraction of this rare, durable and refractory metal. At that time, it was possible to obtain 120 kg of rhenium per year. Now the amount of annual metal production has increased to 40 tons. It is used for the production of catalysts. It is also used to make electrical contacts that can self-clean.

Silver-gray tungsten is not only one of the hardest metals, it also leads in refractoriness. It can only be melted at a temperature of 3422 o C. Thanks to this property, it is used to create incandescent elements. Alloys made from this element have high strength and are often used for military purposes. Tungsten is also used to make surgical instruments. It is also used to make containers in which radioactive materials are stored.

One of the hardest metals is uranium. It was discovered in 1840 by the chemist Peligo. D.I. Mendeleev made a great contribution to the study of the properties of this metal. The radioactive properties of uranium were discovered by the scientist A. A. Becquerel in 1896. Then a chemist from France called the detected metal radiation Becquerel rays. Uranium is often found in nature. The countries with the largest deposits of uranium ore are Australia, Kazakhstan and Russia.

The final place in the top ten hardest metals goes to titanium. For the first time this element was obtained in its pure form by the chemist J. Ya. Berzelius from Sweden in 1825. Titanium is a lightweight silver-white metal that is highly durable and resistant to corrosion and mechanical stress. Titanium alloys are used in many branches of mechanical engineering, medicine and the chemical industry.

Most of the elements in the periodic table belong to metals. They differ in physical and chemical characteristics, but have common properties: high electrical and thermal conductivity, plasticity, positive temperature. Most metals are solid under normal conditions, with one exception to this rule: mercury. Chromium is considered the hardest metal.

In 1766, a previously unknown rich red mineral was discovered at one of the mines near Yekaterinburg. It was given the name “Siberian red lead”. The modern name for this is “crocoite”, its PbCrO4. The new mineral has attracted the attention of scientists. In 1797, the French chemist Vauquelin, conducting experiments with it, isolated a new metal, later called chromium.

Chromium compounds are brightly colored in a variety of colors. This is why it got its name, because in translation from Greek “chrome” means “paint”.

In its pure form, it is a silver-bluish metal. It is an essential component of alloy (stainless) steels, giving them corrosion resistance and hardness. Chromium is widely used in electroplating, to provide a beautiful, wear-resistant protective coating, and in leather processing. Rocket parts, heat-resistant nozzles, etc. are made from alloys based on the base. Most sources claim that chromium is the hardest metal existing on earth. The hardness of chromium (depending on the experimental conditions) reaches 700-800 units on the Brinell scale.

Chromium, although considered the hardest metal on earth, is only slightly inferior in hardness to tungsten and uranium.

How chromium is obtained in industry

Chromium is found in many minerals. The richest deposits of chrome ores are located in South Africa (South Africa). There are many chrome ores in Kazakhstan, Russia, Zimbabwe, Turkey and some other countries. The most widespread is chromium iron ore Fe (CrO2)2. Chromium is obtained from this mineral by firing it in an electric furnace over a layer of coke. The reaction proceeds according to the following formula: Fe (CrO2)2 + 4C = 2Cr + Fe + 4CO.

The hardest metal from chromium iron ore can be obtained in another way. To do this, the mineral is first fused with soda ash, resulting in the formation of sodium chromate Na2CrO4. Then, after acidifying the solution, the chromium is converted into dichromate (Na2Cr2O7). From sodium dichromate, by calcination with coal, the main chromium oxide Cr2O3 is obtained. At the final stage, after the interaction of this oxide with aluminum at high temperature, pure chromium is formed.

Glass made of metal

Specialists from the California Institute of Technology have obtained a material that is unique in its properties - this is the strongest alloy to date - “metal glass”. The uniqueness of the new alloy is that metallic glass is made of metal, but has the internal structure of glass. Today, scientists are figuring out what exactly gives the alloy such unusual properties and how they can be introduced into alloys made from less expensive materials.

The amorphous structure of glass, unlike the crystalline structure of metal, is not protected from the propagation of cracks, which explains the fragility of glass. Metal glasses also have the same disadvantage, which also break quite easily, forming shear bands that develop into cracks.

Alloy properties

Specialists from the Californian Institute noticed that the appearance of a large number of shear bands provides high resistance to the development of cracks, due to which the opposite effect is achieved: the material bends without collapsing. It is precisely this material, the energy of producing shear bands that is much less than the energy required to turn them into cracks, that they created. “By mixing five elements, we ensured that when cooled, the material “does not know” which structure to adopt and chooses an amorphous one,” explained study participant R. Ritchie.

Metal glass

The most durable alloy - metal glass - consists of noble palladium, silicon, phosphorus, germanium with a small addition of silver (formula: Pd79Ag3.5P6Si9.5Ge2).

The new alloy showed itself in tests as a combination of mutually exclusive properties - strength and endurance at a level not previously seen in any other material. As a result, the new metallic glass combines the hardness of glass with the crack resistance of metals. Moreover, the level of rigidity and strength is within reach.

Use of material

For structural metal, the research carried out has significantly pushed back the limits of load tolerance. But, according to scientists’ forecasts, the most durable alloy may not be widely used, due to the rarity and high cost of its main component, palladium. However, developers have reported possible use of this material in medical implants (for example, for intramaxillary prostheses), as well as parts in the automotive or aerospace industries.

From childhood we know that the strongest metal is steel. We associate everything iron with it.

Iron man, iron lady, character of steel. When we pronounce these phrases, we mean incredible strength, strength, hardness.

For a long time, steel was the main material in production and armament. But steel is not metal. More precisely, it is not entirely pure metal. This is with carbon, in which other metal additives are present. By using additives, e.g. change its properties. After this, it is processed. Steelmaking is a whole science.

The strongest metal is obtained by introducing appropriate alloys into steel. This could be chromium, which imparts heat resistance, nickel, which makes the steel hard and elastic, etc.

In some areas, steel has begun to replace aluminum. Time passed, speeds increased. Aluminum couldn't stand it either. I had to turn to titanium.

Yes, yes, titanium is the strongest metal. To give steel high strength characteristics, titanium began to be added to it.

It was discovered in the 18th century. Due to its fragility, it was impossible to use. Over time, having obtained pure titanium, engineers and designers became interested in its high specific strength, low density, resistance to corrosion and high temperatures. Its physical strength exceeds the strength of iron several times.

Engineers began adding titanium to steel. The result is the most durable metal, which has found application in ultra-high temperature environments. At that time, no other alloy could withstand them.

If you imagine an airplane flying three times faster than you can imagine how the covering metal heats up. The sheet metal of the aircraft skin in such conditions heats up to +3000C.

Today, titanium is used unlimitedly in all areas of production. These are medicine, aircraft manufacturing, ship production.

It is clear that titanium will have to move in the near future.

Scientists from the USA, in the laboratories of the University of Texas in Austin, discovered the thinnest and most durable material on Earth. They called it graphene.

Imagine a plate whose thickness is equal to the thickness of one atom. But such a plate is stronger than diamond and conducts electric current a hundred times better than computer chips made of silicon.

Graphene is a material with damaging properties. It will soon leave the laboratory and rightfully take its place among the most durable materials in the Universe.

It is even impossible to imagine that a few grams of graphene would be enough to cover a football field. This is metal. Pipes made of such material can be laid manually without the use of lifting and transport mechanisms.

Graphene, like diamond, is the purest carbon. Its flexibility is amazing. This material bends easily, folds perfectly and rolls perfectly.

Manufacturers of touch screens, solar panels, cell phones, and, finally, super-fast computer chips have already begun to look at it.