Для чего нужен и как выбрать драйвер для светодиодного освещения. Драйверы для светодиодов – все что нужно знать домашнему мастеру Драйвер для светодиодной лампы принцип работы

Примечание автора: «В сети есть достаточно большое количество информации о питании светодиодной продукции, но когда я готовил материал для этой статьи, нашел большое количество абсурдной информации на сайтах из топа выдачи поисковых систем. При этом наблюдается либо полное отсутствие, либо неправильное восприятие базовых теоретических сведений и понятий.»

Светодиоды - самый эффективный на сегодняшний день из всех распространенных источников света. За эффективностью кроются и проблемы, например высокое требование к стабильности тока, который их питает, плохая переносимость сложных тепловых режимов работы (при повышенной температуре). Отсюда выходит задача решения этих проблем. Давайте разберемся, чем отличаются понятия блок питания и драйвер. Для начала углубимся в теорию.

Источник тока и источник напряжения

Блок питания - это обобщенное названия части электронного устройства или другого электрооборудования, которое осуществляют подачу и регулирование электроэнергии для питания этого оборудования. Может находиться как внутри устройства, так и снаружи, в отдельном корпусе.

Драйвер - обобщенное название специализированного источника, коммутатора или регулятора питания для специфичного электрооборудования.

Различают два основных типа источников питания:

    Источник напряжения.

    Источник тока.

Давайте рассмотрим их отличия.

Источник напряжения - это такой и источник питания напряжение на выходе которого не изменяется при изменении выходного тока.

У идеального источника напряжения внутреннее сопротивление равняется нулю, при этом выходной ток может быть бесконечно большим. В реальности же дело обстоит иначе.

У любого источника напряжения есть внутреннее сопротивление. В связи с этим напряжение может несколько отклоняться от номинального при подключении мощной нагрузки (мощная - малое сопротивление, большой ток потребления), а выходной ток обуславливается его внутренним устройством.

Для реального источника напряжения аварийным режимом работы является режим короткого замыкания. В таком режиме ток резко возрастает, его ограничивает только внутреннее сопротивление источника питания. Если источник питания не имеет защиты от КЗ, то он выйдет из строя

Источник тока - это такой источник питания, ток которого остается заданным независимо от сопротивления подключенной нагрузки.

Так как целью источника тока является поддержание заданного уровня тока. Аварийным режимом работы для него является режим холостого хода.

Если объяснить причину простыми словами, то дело обстоит следующим образом: допустим, вы подключили к источнику тока с номинальным в 1 Ампер нагрузку сопротивлением в 1 Ом, то напряжение на его выходе установится в 1 Вольт. Выделится мощность в 1 Вт.

Если увеличить сопротивление нагрузки, скажем, до 10 Ом, то ток так и будет 1А, а напряжение уже установится на уровне 10В. Значит, выделится 10Вт мощности. И наоборот, если снизить сопротивление до 0.1 Ома, ток будет все равно 1А, а напряжение станет 0.1В.

Холостым ходом называется состояние, когда к выводам источника питания ничего не подключено. Тогда можно сказать, что на холостом ходу сопротивление нагрузки очень большое (бесконечное). Напряжение будет расти до тех пор, пока не потечет ток силой в 1А. На практике, для примера такой ситуации можно привести катушку зажигания автомобиля.

Напряжение на электродах свечи зажигания, когда цепь питания первичной обмотки катушки размыкается, растёт до тех пор, пока его величина не достигнет напряжения пробоя искрового промежутка, после чего через образовавшуюся искру протечет ток и рассеется энергия, накопленная в катушке.

Состояние короткого замыкания для источника тока не является аварийным режимом работы. При коротком замыкании сопротивление нагрузки источника питания стремится к нулю, т.е. оно бесконечно маленькое. Тогда напряжение на выходе источника тока будет соответствующим для протекания заданного тока, а выделяемая мощность ничтожно мала.

Перейдем к практике

Если говорить о современной номенклатуре или названиям, которые даются источникам питания в большей степени маркетологами, а не инженерами, то блоком питания принято называть источник напряжения.

К таким относятся:

    Зарядное устройство для мобильного телефона (в них преобразование величин до достижения необходимого зарядного тока и напряжения осуществляется установленными на плате заряжаемого устройства преобразователями.

    Блок питания для ноутбука.

    Блок питания для светодиодной ленты.

Драйвером называют источник тока. Основное его применение в быту - это питание отдельных и те и другие обычной высокой мощности от 0.5 Вт.

Питание светодиодов

В начале статьи было упомянуто, что у светодиода весьма высокие требования к питанию. Дело в том, что светодиод питается током. Это связано с . Взгляните на неё.

На картинке ВАХ диодов разных цветов:

Такая форма ветви (близка к параболе) обусловлена характеристиками полупроводников и примесей которые в них внесены, а также особенностей pn-перехода. Ток, когда напряжение, приложенное к диоду меньше порогового почти, не растёт, вернее его рост ничтожно мал. Когда напряжение на выводах диода достигает порогового уровня, через диод резко начинает расти ток.

Если ток через резистор растёт линейно и зависит от его сопротивления и приложенного напряжения, то рост тока через диод не подчиняется такому закону. И при увеличении напряжения на 1% ток может возрасти на 100% и больше.

Плюс к этому: у металлов сопротивление увеличивается при росте его температуры, а у полупроводников наоборот - сопротивление падает, а ток начинает расти.

Чтобы узнать причины этого подробнее нужно углубиться в курс “Физические основы электроники” и узнать о типах носителей зарядов, ширине запрещенной зоны и прочих интересных вещах, но делать этого мы не будем, бегло эти вопросы мы рассматривали .

В технических характеристиках пороговое напряжение обозначается, как падение напряжения в прямом смещении, для светодиодов белого свечения обычно около 3-х вольт.

С первого взгляда может показаться, что достаточно на этапе проектировки и производства светильника достаточно подобать и выставить стабильное напряжения на выходе блока питания и всё будет хорошо. На светодиодных лентах так и делают, но их питают от стабилизированных источников питания, к тому же мощность применяемых в лентах светодиодах зачастую* мала, десятые и сотые доли Ватт.

Если такой светодиод питается от драйвера, со стабильным выходным током, то при нагреве светодиода ток через него не возрастет, а останется неизменным, а напряжение на его выводах для этого немного снизится.

А если от блока питания (источника напряжения), после нагрева ток увеличится, от чего нагрев будет еще сильнее.

Есть еще один фактор - характеристики всех светодиодов (как и других элементов) всегда отличаются.

Выбор драйвера: характеристики, подключение

Для правильного выбора драйвера нужно ознакомиться с его техническими характеристиками, основные это:

    Номинальный выходной ток;

    Максимальная мощность;

    Минимальная мощность. Не всегда указывается. Дело в том, некоторые драйвера не запустятся если к ним подключена нагрузка меньше определенной мощности.

Часто в магазинах вместо мощности указывают:

    Номинальный выходной ток;

    Диапазон выходных напряжений в виде (мин.)В…(макс.)В, например 3-15В.

    Количество подключаемых светодиодов, зависит от диапазона напряжений, пишется в виде (мин)…(макс), например 1-3 светодиодов.

Так как ток через все элементы одинаков при последовательном подключении, поэтому к драйверу светодиоды подключаются последовательно.

Параллельно светодиоды нежелательно (скорее нельзя) подключать к драйверу, потому что, падения напряжений на светодиодах могут немного различаться и один будет перегружен, а второй наоборот работать в режиме ниже номинального.

Подключать больше светодиодов, чем определено конструкцией драйвера не рекомендуется. Дело в том, что любой источник питания имеет определенную максимально допустимую мощность, которую нельзя превышать. А при каждом подключенном светодиоде к источнику стабилизированного тока напряжение на его выходах будет возрастать примерно на 3В (если светодиод белый), а мощность будет равняться как обычно произведению тока на напряжение.

Исходя из этого, сделаем выводы, чтобы купить правильный драйвер для светодиодов, нужно определиться с током, который потребляют светодиоды и напряжением, которое на них падает, и по параметрам подобрать драйвер.

Например этот драйвер поддерживает подключение до 12 мощных светодиодов на 1Вт, с током потребления в 0.4А.

Вот такой выдаёт ток в 1.5А и напряжение от 20 до 39В, значит к нему можно подключить, например светодиод на 1.5а, 32-36В и мощностью 50Вт.

Заключение

Драйвер - это один из типов блока питания, рассчитанный на обеспечение светодиодов заданным током. В принципе все равно как называют этот источник питания. Блоками питания называются источники питания для светодиодных лент на 12 или 24 Вольта, они могут выдавать любой ток ниже максимального. Зная правильные названия, вы вряд ли ошибетесь при приобретении товара в магазинах, и вам не придётся его менять.

Самым оптимальным способом подключения к 220В, 12В является использование стабилизатора тока, светодиодного драйвера. На языке предполагаемого противника пишется «led driver». Добавив к этому запросу желаемую мощность, вы легко найдёте на Aliexpress или Ebay подходящий товар.


  • 1. Особенности китайских
  • 2. Срок службы
  • 3. ЛЕД драйвер на 220В
  • 4. RGB драйвер на 220В
  • 5. Модуль для сборки
  • 6. Драйвер для светодиодных светильников
  • 7. Блок питания для led ленты
  • 8. Led драйвер своими руками
  • 9. Низковольтные
  • 10. Регулировка яркости

Особенности китайских

Многие любят покупать на самом большом китайском базаре Aliexpress. цены и ассортимент радуют. LED driver чаще всего выбирают из-за низкой стоимости и хороших характеристик.

Но с повышением курса доллара покупать у китайцев стало невыгодно, стоимость сравнялась с Российской, при этом отсутствует гарантия и возможность обмена. Для дешевой электроники характеристики бывают всегда завышены. Например, если указана мощность в 50 ватт, в лучшем случае то это максимальная кратковременная мощность, а не постоянная. Номинальная будет 35W — 40W.

К тому же сильно экономят на начинке, чтобы снизить цену. Кое где не хватает элементов, которые обеспечивают стабильную работу. Применяются самые дешевые комплектующие, с коротким сроком службы и невысокого качества, поэтому процент брака относительно высокий. Как правило, комплектующие работают на пределе своих параметров, без какого либо запаса.

Если производитель не указан, то ему не надо отвечать за качество и отзыв про его товар не напишут. А один и тот же товар выпускают несколько заводов в разной комплектации. Для хороших изделий должен быть указан бренд, значит он не боится отвечать за качество своей продукции.

Одним из лучших является бренд MeanWell, который дорожит качеством своих изделий и не выпускает барахло.

Срок службы

Как у любого электронного устройства у светодиодного драйвера есть срок службы, который зависит от условий эксплуатации. Фирменные современные светодиоды уже работают до 50-100 тысяч часов, поэтому питание выходит из строя раньше.

Классификация:

  1. ширпотреб до 20.000ч.;
  2. среднее качество до 50.000ч.;
  3. до 70.000ч. источник питания на качественных японских комплектующих.

Этот показатель важен при расчёте окупаемости на долгосрочную перспективу. Для бытового пользования хватает ширпотреба. Хотя скупой платит дважды, и в светодиодных прожекторах и светильниках это отлично работает.

ЛЕД драйвер на 220В

Современные светодиодные драйвера конструктивно выполняются на ШИМ контроллере, который очень хорошо может стабилизировать ток.

Основные параметры:

  1. номинальная мощность;
  2. рабочий ток;
  3. количество подключаемых светодиодов;
  4. степень защиты от влаги и пыли
  5. коэффициент мощности;
  6. КПД стабилизатора.

Корпуса для уличного использования выполняются из металла или ударопрочного пластика. При изготовлении корпуса из алюминия он может выступать в качестве системы охлаждения для электронной начинки. Особенно это актуально при заполнении корпуса компаундом.

На маркировке часто указывают, сколько светодиодов можно подключить и какой мощности. Это значение может быть не только фиксированным, но и в виде диапазона. Например, возможно от 4 до 7 штук по 1W. Это зависит от конструкции электрической схемы светодиодного драйвера.

RGB драйвер на 220В

..

Трёхцветные светодиоды RGB отличаются от одноцветных тем, что содержат в одном корпусе кристаллы разных цветов красный, синий, зелёный. Для управления ими каждый цвет необходимо зажигать отдельно. У диодных лент для этого используется RGB контроллер и блок питания.

Если для RGB светодиода указана мощность 50W, то это общая на всё 3 цвета. Чтобы узнать примерную нагрузку на каждый канал, делим 50W на 3, получим около 17W.

Кроме мощных led driver есть и на 1W, 3W, 5W, 10W.

Пульты дистанционного управления (ДУ) бывают 2 типов. С инфракрасным управлением, как у телевизора. С управлением по радиоканалу, ДУ не надо направлять на приёмник сигнала.

Модуль для сборки

Если вас интересует лед driver для сборки своими руками светодиодного прожектора или светильника, то можно использовать led driver без корпуса.

Прежде чем делать led driver 50W своими руками, стоит немного поискать, например есть в каждой диодной лампе. Если у вас есть неисправная лампочка, у которой неисправность в диодах, то можно использовать driver из неё.

Низковольтные

Подробно разберем виды низковольтных лед драйверов работающих от напряжения до 40 вольт. Наши китайские братья по разуму предлагают множество вариантов. На базе ШИМ контроллеров производятся стабилизаторы напряжения и стабилизаторы тока. Основное отличие, у модуля с возможностью стабилизации тока на плате находится 2-3 синих регулятора, в виде переменных резисторов.

В качестве технических характеристик всего модуля указывают параметры ШИМ микросхемы, на которой он собран. Например устаревший но популярный LM2596 по спецификациям держит до 3 Ампер. Но без радиатора он выдержит только 1 Ампер.

Более современный вариант с улучшенным КПД это ШИМ контроллер XL4015 рассчитанный на 5А. С миниатюрной системой охлаждения может работать до 2,5А.

Если у вас очень мощные сверхяркие светодиоды, то вам нужен led драйвер для светодиодных светильников. Два радиатора охлаждают диод Шотки и микросхему XL4015. В такой конфигурации она способна работать до 5А с напряжением до 35В. Желательно чтобы он не работал в предельных режимах, это значительно повысить его надежность и срок эксплуатации.

Если у вас небольшой светильник или карманный прожектор, то вам подойдет миниатюрный стабилизатор напряжения, с током до 1,5А. Входное напряжение от 5 до 23В, выход до 17В.

Регулировка яркости

Для регулирования яркости светодиода можно использовать компактные светодиодный диммеры, которые появились недавно. Если его мощности будет недостаточно, то можно поставить диммер побольше. Обычно они работают в двух диапазонах на 12В и 24В.

Управлять можно с помощью инфракрасного или радиопульта дистанционного управления (ДУ). Они стоят от 100руб за простую модель и от 200руб модель с пультом ДУ. В основном такие пульты используют для диодных лент на 12В. Но его с лёгкостью можно поставить к низковольтному драйверу.

Диммирование может быть аналоговым в виде крутящейся ручки и цифровым в виде кнопок.

Светодиодные светильники получили массовое распространение, вследствие чего началось активное производство вторичных источников питания. Драйвер светодиодной лампы способен стабильно поддерживать заданные значения тока на выходе устройства, стабилизируя напряжение, проходящее через цепочку диодов.

Мы расскажем все о видах и принципах действия устройства преобразования тока для работы диодной лампочки. В предложенной нами статье приведены ориентиры выбора драйвера, даны полезные рекомендации. Самостоятельный домашние электрики у нас найдут проверенные на практике схемы подключения.

Диодные кристаллы состоят из двух полупроводников – анода (плюс) и катода (минус), которые и отвечают за трансформацию электросигналов. Одна область имеет проводимость P-вида, вторая – N. При подключении источника питания через эти элементы потечет ток.

За счет такой полярности электроны из зоны P-типа устремляются в зону N-типа, и наоборот, заряды из точки N устремятся к Р. Однако каждый раздел области имеет свои границы, называющиеся P-N переходами. На этих участках частицы встречаются и взаимопоглощаются или рекомбинируются.

Диод относится к полупроводниковым элементам и обладает только одним p-n переходом. По этой причине, главной характеристикой, определяющей степень яркости их свечения, является не напряжение, а ток

Во время P-N переходов напряжение снижается на определенное количество вольт, всегда одинаковое для каждого элемента цепи. Учитывая эти значения, драйвер стабилизирует показатели входящего тока и образует на выходе постоянную величину.

Какая требуется мощность и какие значения потерь при P-N прохождении указываются в паспорте светодиодного прибора. Поэтому при необходимо учитывать параметры блока питания, диапазон которых должен быть достаточным для компенсации утраченной энергии.

Для того, чтобы мощные светодиоды отработали указанное в характеристиках время, требуется стабилизирующее устройство – драйвер. На корпусе электронного механизма всегда показано его выходное напряжение

Блоки питания с напряжением от 10 до 36 В применяются для оснащения осветительных приборов.

Техника может быть самых различных видов:

  • фары автомобилей, велосипедов, мотоциклов и т. д.;
  • небольшие переносные или уличные фонари;
  • , ленты, и модули.

Однако для , а также в случае использования постоянного напряжения, драйверы допустимо не применять. Вместо них в схему вносится резистор, также питающийся от сети 220 В.

Принцип работы блока питания

Разберемся, в чем же состоят различия между источником напряжения и блоком питания. В качестве примера рассмотрим схему, изображенную ниже.

Подключив к источнику питания 12 В резистор на 40 Ом, через него будет проходить ток в 300 мА (рисунок А). При параллельном включении в цепь второго резистора значение тока составит – 600 мА (Б). Однако напряжение будет неизменным.

Несмотря на подключение двух резисторов к источнику питания, второй на выходе будет создавать неизменное напряжение, т. к. при идеальных условиях не подчиняется нагрузке

Теперь рассмотрим, как изменятся значения, если в схеме будут подключены резисторы к блоку питания. Аналогичным образом вводим реостат 40 Ом с драйвером 300 мА. Последний создает на нем напряжение в 12 В (схема В).

Если же цепь составлена из двух резисторов, то величина тока неизменна, а напряжение составит 6 В (Г).

Драйвер в отличие от источника напряжения поддерживает на выходе заданные параметры тока, однако мощность напряжения может меняться

Делая выводы, можно сказать, что качественный преобразователь поставляет нагрузке номинальный ток даже при падении напряжения. Соответственно, кристаллы диодов на 2 В или на 3 В и током на 300 мА будут гореть одинаково ярко со сниженным напряжением.

Отличительные характеристики преобразователя

Один из важнейших показателей – передаваемая мощность под нагрузкой. Устройство нельзя перегружать и пытаться получить максимально возможные результаты.

Неправильное использование способствует быстрому выходу из строя не только обзорного механизма, но и LED чипов.

К главным факторам, влияющим на работу, относятся:

  • составляющие элементы, используемые в процессе сборки;
  • степень защиты (IP);
  • минимальные и максимальные значения на входе и выходе;
  • производитель.

Современные модели преобразователей выпускаются на базе микросхем и применяют технологию широтно-импульсных преобразований (ШИМ).

В процессе работы блока питания для регулирования величины выходящего напряжения внедрен метод широтно-импульсной модуляции, при этом на выходе сохраняется аналогичный род тока, что и на входе

Такие устройства отличаются высокой степенью защиты от коротких замыканий, перегрузок сети, а также обладают повышенным КПД.

Правила подбора преобразователя тока

Для приобретения преобразователя LED лампы следует изучить ключевые . Опираться стоит на выходное напряжение, номинальный ток и выдаваемую мощность.

Мощность световых диодов

Разберем изначально выходное напряжение, которое подчинено нескольким фактором:

  • значение потерь напряжения на P-N переходах кристаллов;
  • количество световых диодов в цепочке;
  • схема подключения.

Параметры номинального тока можно определить по характерным особенностям потребителя, а именно мощности LED элементов и степени их яркости.

Этот показатель будет влиять на потребляемый кристаллами ток, диапазон которого варьируется исходя из необходимой яркости. Задача преобразователя - обеспечить этим элементам подачу нужного количества энергии.

Значение напряжения на выходе должно быть больше или идентичным общей сумме затраченной энергии на каждом блоке электросхемы

Мощность устройства зависит от силы каждого LED элемента, их цвета и количества.

Для просчета потребляемой энергии используют такую формулу:

P H = P LED * N ,

  • N – количество кристаллов в цепи.
  • Полученные показатели не должны быть меньше мощности драйвера. Теперь необходимо определить требуемое номинальное значение.

    Максимальная мощность прибора

    Следует учитывать и тот факт, что для обеспечения стабильной работы преобразователя его номинальные показатели должны превышать на 20-30 % полученное значение P H .

    Таким образом формула приобретает вид:

    P max ≥ (1,2..1,3) * P H ,

    где P max - номинальная мощность блока питания.

    Помимо мощности и количества потребителей на плате, сила нагрузки также подчинена цветовым факторам потребителя. При одинаковом токе, в зависимости от оттенка, они имеют разные показатели падения напряжения.

    Драйвер для LED лампы должен выдавать такое количество тока, которое необходимо для обеспечения максимальной яркости. При подборе устройства покупатель должен помнить о том, что мощность должна быть больше, чем используют все светодиоды

    Возьмем для примера, светодиоды американской фирмы Cree из линейки XP-E в красном цвете.

    Их характеристики выглядят следующим образом:

    • падение напряжения 1,9-2,4 В;
    • ток 350 мА;
    • средняя мощность потребления 750 мВт.

    Аналог зеленого цвета при том же токе, будет иметь совсем другие показатели: потери на P-N переходах 3,3-3,9 В, а мощность 1,25 Вт.

    Соответственно можно сделать выводы: драйвер, рассчитанный на 10 Вт, применяется для питания двенадцати красных кристаллов или восьми зеленых.

    Схема подключения светодиодов

    Выбор драйвера должен осуществляться после определения схемы подключения LED-потребителей. Если в первую очередь приобрести световые диоды, а затем подбирать к ним преобразователь, этот процесс будет сопровождаться массой сложностей.

    Для поиска устройства, обеспечивающего работу именно такого количества потребителей при заданной схеме подключения, придется потратить немало времени.

    Приведем пример с шестью потребителями. Потери напряжения у них составляют 3 В, потребляемый ток 300 мА. Для их подключения можно использовать один из методов, при этом в каждом отдельном случае требуемые параметры блока питания будут отличаться.

    Недостатком поочередного расположения диодов является потребность в блоке питании с большим напряжением, если в цепи будет много кристаллов

    В нашем случае при последовательном подключении необходим блок на 18 В с током 300 мА. Основной плюс такого способа в том, что через всю линию проходит одинаковая сила, соответственно, все диоды горят с идентичной яркостью.

    Минусом параллельного размещения потребителей является разность яркости свечения каждой цепочки. Такое негативное явление возникает из-за разброса параметров диодов вследствие различий между током, проходящим по каждой линии

    Если применено параллельное размещение – достаточно использовать преобразователь на 9 В, однако значения затрачиваемого тока будет увеличено вдвое, в сравнении с предыдущим методом.

    Метод последовательного расположения по два диода не может быть применен с заменой количества входящих в группу кристаллов – 3 и больше. Такие ограничения связаны с тем, что через один элемент может пройти слишком большой ток, а это создает вероятность выхода из строя всей цепи

    Если используется последовательный метод с формированием пар по два светодиода, используется драйвер с аналогичными показателями, как в предыдущем случае. При этом яркость освещения будет уже равномерной.

    Однако и здесь не обошлось без отрицательных нюансов: при подаче питания к группе, вследствие разброса характеристик один из светодиодов может открываться быстрее второго, соответственно, через него и пойдет ток, вдвойне превышающий номинальное значение.

    Многие виды рассчитаны на подобные краткосрочные скачки, но такой метод относится к менее востребованным.

    Виды драйверов по типу устройства

    Приспособления, преобразующие питание 220 В на необходимые показатели для светодиодов, условно делятся на три категории: электронные; на базе конденсаторов; диммируемые.

    Рынок светотехнических аксессуаров представлен обширным разнообразием моделей драйверов в основном китайского производителя. И несмотря на низкий ценовой диапазон, из этих приборов можно выбрать вполне достойный вариант. Однако стоит обращать внимание на гарантийный талон, т.к. не вся представленная продукция имеет приемлемое качество.

    Электронный вид прибора

    В идеальном варианте электронный преобразователь должен быть оснащен транзистором. Его роль состоит в осуществлении разгрузки регулировочной микросхемы. Для исключения или максимального сглаживания пульсации, на выходе монтируется конденсатор.

    Такого типа устройство относится к дорогостоящей категории, однако оно способно стабилизировать ток до 750 мА, на что балластные механизмы неспособны.

    Самые новые драйвера, в основном устанавливают на лампочки с цоколем E27. Исключение из правил – изделия Gauss GU5,3. Они оснащены безтрансформаторным преобразователем. Однако степень пульсации в них достигает нескольких сотен Гц

    Пульсирование – это не единственный недостаток преобразователей. Вторым можно назвать электромагнитные помехи высокочастотного (ВЧ) диапазона. Так, если в розетку, связанную со светильником, будут подключаться другие электроприборы, например, радио - можно ожидать помехи при приеме цифровых FM-частот, телевидения, роутера и т. д.

    В опциональном устройстве качественного прибора должны быть два конденсатора: один – электролитический для сглаживания пульсаций, другой – керамический, для понижения ВЧ. Однако такое сочетание можно встретить нечасто, особенно если говорить о китайских изделиях.

    Те, кто имеет общие понятия в подобных электросхемах, могут самостоятельно подбирать выходные параметры электронного преобразователя, изменяя номинал резисторов

    За счет высокого КПД (до 95%) такие механизмы подходят для мощных приборов, используемых в различных сферах, например, для тюнинга автомобилей, в уличных осветительных приборах, а также бытовых LED источниках.

    Блок питания на основе конденсаторов

    Теперь переходим к не столь популярным устройствам – на базе конденсаторов. Практически все схемы светодиодных ламп дешевого образца, где применены такого типа драйверы, имеют схожие характеристики.

    Однако вследствие модификаций производителем они претерпевают изменения, например, удаление какого-либо элемента цепи. Особо часто этой деталью служит один из конденсаторов - сглаживающий.

    Вследствие бесконтрольного заполнения рынка дешевым и некачественным товаром пользователи могут «ощущать» в лампах стопроцентную пульсацию. Даже не углубляясь в их устройство, можно утверждать об удалении из схемы сглаживающего элемента

    Плюсов у таких механизмов всего два: они доступны для самостоятельной сборки, а их КПД приравнивается к стопроцентному, т. к. потери будут только на p-n переходах и сопротивлениях.

    Такое же количество и отрицательных сторон: низкая электробезопасность и высокая степень пульсации. Второй недостаток составляет около 100 Гц и образуется в результате выпрямления переменного напряжения. В ГОСТе прописана норма допустимой пульсации в 10-20 % в зависимости от предназначения помещения, где установлен светотехнический прибор.

    Единственный способ сгладить этот недостаток – подбор конденсатора с правильным номиналом. Тем не менее не стоит рассчитывать на полное устранение проблемы, – такое решение может всего лишь сгладить интенсивность всплесков.

    Диммируемые преобразователи тока

    Драйверы-светорегуляторы для позволяют менять входящие и выходящие показатели тока, при этом снижается или увеличивается степень яркости света, излучаемого диодами.

    Существует два метода подключения:

    • первый предполагает плавный пуск;
    • второй – импульсный.

    Рассмотри принцип работы диммируемых драйверов на основе микросхемы CPC9909, используемой в качестве регулирующего аппарата для светодиодных цепей, в том числе и с высокой яркостью.


    Схема стандартного включения CPC9909 с питанием 220 В. Согласно схематическим указаниям, есть возможность управления одним или несколькими мощными потребителями

    При плавном пуске микросхема с драйвером обеспечивает постепенное включение диодов с нарастающей яркостью. Для этого процесса задействуют два резистора, подключенные к выводу LD, предназначенного для выполнения задачи плавного диммирования. Так реализуется важная задача – продление срока эксплуатации LED элементов.

    Этот же вывод обеспечивает и аналоговое регулирование - резистор на 2,2 кОм меняют на более мощный переменный аналог - 5,1 кОм. Таким образом достигается плавное изменение потенциала на выходе.

    Применение второго способа предполагает подачу импульсов прямоугольного типа на низкочастотный вывод PWMD. При этом задействуют либо микроконтроллер, либо импульсный генератор, которые обязательно разделяются оптопарой.

    С корпусом или без него?

    Драйвера выпускаются в корпусе или без. Первый вариант является самым распространенным и более дорогим. Такие устройства защищены от попадания влаги и частиц пыли.

    Приспособления второго типа применяются при проведении скрытого монтажа и, соответственно, отличаются дешевизной.

    Питание всех представленных приборов может быть от сети 12 В или 220 В. Несмотря на то, что бескорпусные модели выигрывают в цене, они существенно отстают в плане безопасности и надежности механизма

    Каждый из них отличается допустимой температурой в процессе эксплуатации – на это также необходимо обращать внимание при подборе.

    Классическая схема драйвера

    Для самостоятельной сборки LED блока питания разберемся с наиболее простым устройством импульсного типа, не имеющего гальванической развязки. Главное преимущество такого рода схем – простое подключение и надежная работа.

    Схема такого механизма составлена из трех основных каскадных областей:

    1. Разделитель напряжения на емкостном сопротивлении.
    2. Выпрямитель.
    3. Стабилизаторы напряжения.

    Первый участок – противодействие, оказываемое переменному току на конденсаторе С1 с резистором. Последний требуется исключительно для осуществления самостоятельной зарядки инертного элемента. На работу схемы он не оказывает влияния.

    Когда образованная полуволна напряжения проходит через конденсатор, ток протекает до тех пор, пока обкладки полностью не зарядятся. Чем меньше емкость механизма, тем меньше времени будет затрачено на его полный заряд.

    Например, прибор объемом 0,3-0,4 мкФ заряжается в течение 1/10 периода полуволны, т. е. всего десятая доля проходящего напряжения пройдет через этот участок.

    Процесс выпрямления на этом участке выполняется по схеме Гретца. Диодный мост подбирается, отталкиваясь от номинального тока и обратного напряжения. При этом последнее значение не должно быть меньше 600 В

    Второй каскад является электрическим устройством, преобразующим (выпрямляющим) переменный ток в пульсирующий. Такой процесс называется двухполупериодным. Поскольку одна часть полуволны была сглажена конденсатором, на выходе этого участка постоянный ток будет равен 20-25 В.

    Так как питание светодиодов не должно превышать 12 В, для схемы необходимо использовать стабилизирующий элемент. Для этого вводится емкостный фильтр. Например, можно применять модель L7812

    Третий каскад работает на базе сглаживающего стабилизирующего фильтра – электролитического конденсатора. Выбор его емкостных параметров зависит от силы нагрузки.

    Поскольку собранная схема воспроизводит свою работу сразу, нельзя касаться оголенных проводов, т. к. проводимый ток достигает десятков ампер – предварительно проводится изоляция линий.

    Выводы и полезное видео по теме

    Все сложности, с которыми может столкнуться радиолюбитель, подбирающий преобразователь для мощных LED ламп, подробно описаны в видеосюжете:

    Ключевые особенности самостоятельного подключения преобразовательного прибора в электросхему:

    Поэтапный инструктаж, описывающий процесс сборки своими руками светодиодного драйвера из подручных средств:

    Несмотря на заявленные производителем десятки тысяч часов бесперебойной работы светодиодных ламп, есть множество факторов, существенно снижающих эти показатели.

    Для сглаживания всех прыжков тока в электросистеме предназначены драйверы. К их выбору или самостоятельной сборке нужно подходить ответственно после просчета всех необходимых параметров.

    Расскажите о том, как подбирали драйвер для работы светодиодной лампочки. Поделитесь своими аргументами и способами стабилизации поставки напряжения диодному прибору освещения. Оставляйте комментарии в находящемся ниже блоке, задавайте вопросы, размещайте фотоснимки по теме статьи.

    Постоянные читатели часто интересуются, как правильно сделать питание для светодиодов, чтобы срок службы был максимален. Особенно это актуально для led неизвестного производства с плохими техническими характеристиками или завышенными.

    По внешнему виду и параметрам невозможно определить качество. Частенько приходится рассказывать как рассчитать блок питания для светодиодов, какой лучше купить или сделать своими руками. В основном рекомендую купить готовый, любая схема после сборки требует проверки и настройки.


    • 1. Основные типы
    • 2. Как сделать расчёт
    • 3. Калькулятор для расчёта
    • 4. Подключение в автомобиле
    • 5. Напряжения питания светодиодов
    • 6. Подключение от 12В
    • 7. Подключение от 1,5В
    • 8. Как рассчитать драйвер
    • 9. Низковольтное от 9В до 50В
    • 10. Встроенный драйвер, хит 2016
    • 11. Характеристики

    Основные типы

    Светодиод – это полупроводниковый электронный элемент, с низким внутренним сопротивлением. Если подать на него стабилизированное напряжение, например 3V, через него пойдёт большой ток, например 4 Ампера, вместо требуемого 1А. Мощность на нём составит 12W, у него сгорят тонкие проводники, которыми подключен кристалл. Проводники отлично видно на цветных и RGB диодах, потому что на них нет жёлтого люминофора.

    Если блок питания для светодиодов 12V со стабилизированным напряжением, то для ограничения тока последовательно устанавливают резистор. Недостатком такого подключения будет более высокое потребление энергии, резистор тоже потребляет некоторую энергию. Для светодиодных аккумуляторных фонарей на 1,5В применять такую схему нерационально. Количество вольт на батарейке быстро снижается, соответственно будет падать яркость. И без повышения минимум до 3В диод не заработает.

    Этих недостатков лишены специализированные светодиодные драйвера на ШИМ контроллерах. При изменениях напряжения ток остаётся постоянным.

    Как сделать расчёт

    1. номинальная потребляемая мощность или желаемая;
    2. напряжение падения.

    Суммарное энергопотреблением подключаемой электрической цепи не должно превышать мощности блока.

    Падения напряжения зависит от того, какой свет излучает лед чип. Я рекомендую покупать фирменные LED, типа Bridgelux, разброс параметров у них минимальный. Они гарантированно держат заявленные характеристики и имеют запас по ним. Если покупаете на китайском базаре, типа Aliexpress, то не надейтесь на чудо, в 90% вас обманут и пришлют барахло с параметрами в 2-5 раз хуже. Это многократно проверяли мои коллеги, которые заказывали недорогие LED 5730 иногда по 10 раз. Получали они SMD5730 на 0,1W, вместо 0,5W. Это определяли по вольтамперной-характеристике.

    К тому же у дешевых разброс параметров очень большой. Что бы это определить в домашних условиях своими руками, подключите их последовательно 5-10 штук. Регулирую количество вольт, добейтесь чтобы они слегка светились. Вы увидите, что часть светит ярче, часть едва заметно. Поэтому некоторые в номинальном рабочем режиме будут греться сильнее, другие меньше. Мощность будет на них разная, поэтому самые нагруженные выйдут из строя раньше остальных.

    Калькулятор для расчёта

    Калькулятор учитывает 4 параметра:

    • количество вольт на выходе;
    • снижение напряжения на одном LED;
    • номинальный рабочий ток;
    • количество LED в цепи.

    Подключение в автомобиле

    ..

    При заведенном двигателе бывает в среднем 13,5В — 14,5В, при заглушенном12В — 12,5В. Особые требования при включении в автомобильный прикуриватель или бортовую сеть. Кратковременные скачки могут быть до 30В. Если у вас используется токоограничивающее сопротивление, то сила тока возрастает прямо пропорционально повышению напряжению питания светодиодов. По этой причине лучше ставить стабилизатор на микросхеме.

    Недостатком использования в авто может быть появление помех на радио в УКВ диапазоне. ШИМ контроллер работает на высоких частотах и будет давать помехи на ваш радиоприёмник. Можно попробовать заменить на другой или линейный типа . Иногда помогает экранирование металлом и размещение подальше от головного устройства авто.

    Напряжения питания светодиодов

    Из таблиц видно, для маломощных на 1W, 3W этот показатель 2В для красного, желтого цвета, оранжевого. Для белого, синего, зелёного он от 3,2В до 3,4В. Для мощных от 7В до 34В. Эти циферки придется использовать для расчётов.

    Таблица для LED на 1W, 3W, 5W

    Таблица для мощных светодиодов 10W, 20W, 30W, 50W, 100W

    Подключение от 12В

    Одно из самых распространенных напряжений это 12 Вольт, они присутствуют в бытовой технике, в автомобиле и автомобильной электронике. Используя 12V можно полноценно подключить 3 лед диода. Примером служит светодиодная лента на 12V, в которой 3 штуки и резистор подключены последовательно.

    Пример на диоде 1 W, его номинальный ток 300мА.

    • Если на одном LED падает 3,2В, то для 3шт получится 9,6В;
    • на резисторе будет 12В – 9,6В = 2,4В;
    • 2,4 / 0,3 = 8 Ом номинал нужного сопротивления;
    • 2,4 * 0,3 = 0,72W будет рассеиваться на резисторе;
    • 1W + 1W + 1W + 0,72 = 3,72W полное энергопотребление всей цепи.

    Аналогичным образом можно вычислить и для другого количества элементов в цепи.

    Подключение от 1,5В

    Источник питания для светодиодов может быть и простой пальчиковой батарейкой на 1,5В. Для LED диода требуется обычно минимум 3V, без стабилизатора тут никак не обойтись. Такие специализированные светодиодные драйвера используются в ручных фонариках на Cree Q5 и Cree XML T6. Миниатюрная микросхема повышает количество вольт до 3V и стабилизирует 700мА. Включение от 1.5 вольт при помощи токоограничивающего сопротивления невозможно. Если применить две батареи на 1.5 вольт, соединив их последовательно, получим 3В. Но батарейки достаточно быстро разряжаются, а яркость будет падать еще быстрее. При 2,5В емкости в батареях останется еще много, но диод уже практически потухнет. А светодиодный драйвер будет поддерживать номинальную яркость даже при 1В.

    Обычно такие модули заказываю на Aliexpress, у китайцев стоят 50-100руб, в России они дороговаты.

    Как рассчитать драйвер

    1. составьте на бумаге схему подключения;
    2. если драйвер китайский, то желательно проверить выдержит он заявленную мощность или нет;
    3. учитывайте, что для разных цветов (синий, красный, зеленый) разное падение вольт;
    4. суммарная мощность не должна быть выше, чем у источника тока.

    Нарисуйте схему включения, на которой распределите элементы, если они подключены не просто последовательно, а комбинировано с параллельным соединением.

    На китайском блоке питания неизвестного производителя мощность может быть значительно ниже. Они запросто указывают максимальную пиковую мощность, а не номинальную долговременную. Проверять сложнее, надо предельно нагрузить блок питания и замерить параметры.

    Для третьего пункта используйте примерные таблицы для 1W,3W, 5W, 10W, 20W, 30W, 50W, 100W, которые приведены выше. Но больше доверяйте характеристикам, которые вам дал продавец. Для однокристальных бывает 3V, 6V, 12V.

    Если энергопотребление цепи в сумме превысит номинальную мощность источника питания, то ток просядет и увеличится нагрев. Он восстановится до нормального уровня, если снизить нагрузку.

    Для светодиодных лент сделать расчёт очень просто. Измерьте количество Ватт на 1 метр и умножьте на количество метров. Именно измерьте, в большинстве случаем мощность завышена и вместо 14,4 Вт/м получите 7 Вт/м. Ко мне слишком часто обращаются с такой проблемой разочарованные покупатели.

    Низковольтное от 9В до 50В

    Кратко расскажу, что использую для включения для блоков на 12В, 19V, 24В и для подключения к автомобильным 12В.

    Чаще всего покупаю готовые модули на ШИМ микросхемах:

    1. бывают повышающие, например, на входе 12V, на выходе 22В;
    2. понижающие, например из 24В до 17В.

    Не всем хочется тратить большую денежку на покупку готового прожектора для авто, светодиодного светильника или заказывать готовый драйвер. Поэтому обращаются ко мне, что бы из подручных комплектующих собрать что-нибудь приличное. Цена таких модулей начинается от 50руб до 300руб за модель на 5А с радиатором. Покупаю заранее по несколько штук, расходятся быстро.

    Больше всех популярен вариант на линейной ИМС , простой, надежный устаревший.

    Очень популярны модели на LM2596, но она уже устарела и советую обратить внимание на более современное с хорошим КПД. Такие блоки имеют от 1 до 3 подстроечных сопротивлений, которыми можно настроить любые параметры до 30В и до 5А.

    Встроенный драйвер, хит 2016

    В начале 2016 года стали набирать популярность светодиодные модули и COB диоды с интегрированным драйвером. Они включаются сразу в сеть 220В, идеальный вариант для сборки светотехники своими руками. Все элементы находятся на одной теплопроводящей пластине. ШИМ контроллеры миниатюрные, благодаря хорошему контакту с системой охлаждения. Тестировать надежность и стабильность еще не приходилось, первые отзывы появятся минимум через полгода использования. Уже заказал самую дешевую и доступную модель COB на 50W. Чтобы найти такие на китайском базаре Алиэкспресс, укажите в поиске «integrated led driver».

    Характеристики

    Глобальная проблема, это подделка светодиодов Cree и Philips в промышленных масштабах. У китайцев для этого есть целые предприятия, внешне копируют на 95-99%, простому покупателю отличить невозможно. Самое плохое, когда такую подделку вам продают под видом оригинального Cree T6. Вы будете подключать поддельный по техническим спецификациям оригинального. Подделка имеет характеристики в среднем на 30% хуже. Меньше световой поток, ниже максимальная рабочая температура, ниже энергопотребление. Про обман вы узнаете очень не скоро, он проработает примерно в 5-10 раз меньше настоящего, особенно на двойном токе.

    Недавно измерял световой поток своих фонариков на левых Cree производства LatticeBright. Доставал всю плату с драйвером и ставил в фотометрический шар. Получилось 180-200 люмен, у оригинала 280-300лм. Без серьезного оборудования, которое преимущественно есть в лабораториях, вы не сможете измерить, соответственно узнать правду.

    Иногда попадаются разогнанные диоды, сила тока на которых на 30%-60% выше номинальной, соответственно и мощность. Недобросовестный производитель, особенно подвально-китайский пользуется тем, что срок службы трудно измерить в часах. Ведь никто не засекает отработанное время, а когда светильник или светодиодный прожектор выйдут из строя продавца уже не найти. Да и искать бессмысленно, срок гарантии на такую продукцию дают всегда меньше периода службы.

    Стандартная схема драйвера светодиодов РТ4115 представлена на рисунке ниже:

    Напряжение питания должно быть по-крайней мере на 1.5-2 вольта выше, чем суммарное напряжение на светодиодах. Соответственно, в диапазоне питающих напряжений от 6 до 30 вольт, к драйверу можно подключить от 1 до 7-8 светодиодов.

    Максимальное напряжение питания микросхемы 45 В , но работа в таком режиме не гарантируется (лучше обратите внимание на аналогичную микросхему ).

    Ток через светодиоды имеет треугольную форму с максимальным отклонением от среднего значения ±15%. Средний ток через светодиоды задается резистором и рассчитывается по формуле:

    I LED = 0.1 / R

    Минимально допустимое значение R = 0.082 Ом, что соответствует максимальному току 1.2 А.

    Отклонение тока через светодиод от расчетного не превышает 5%, при условии монтажа резистора R с максимальным отклонением от номинала 1%.

    Итак, для включения светодиода на постоянную яркость вывод DIM оставляем висеть в воздухе (он внутри PT4115 подтянут к уровню 5В). При этом ток на выходе определяется исключительно сопротивлением R.

    Если между выводом DIM и "землей" включить конденсатор, мы получим эффект плавного зажигания светодиодов. Время выхода на максимальную яркость будет зависеть от емкости конденсатора, чем она больше, тем дольше будет разгораться светильник.

    Для справки: каждый нанофарад емкости увеличивает время включения на 0.8 мс.

    Если же требуется сделать диммируемый драйвер для светодиодов с регулировкой яркости от 0 до 100%, то можно прибегнуть к одному из двух способов:

    1. Первый способ предполагает подачу на вход DIM постоянного напряжения в диапазоне от 0 до 6В. При этом регулировка яркости от 0 до 100% осуществляется при напряжении на выводе DIM от 0.5 до 2.5 вольт. Увеличение напряжения выше 2.5 В (и вплоть до 6 В) никак не влияет на ток через светодиоды (яркость не меняется). Напротив, уменьшение напряжения до уровня 0.3В или ниже приводит к отключению схемы и переводу ее в режим ожидания (ток потребления при этом падает до 95 мкА). Таким образом, можно эффективно управлять работой драйвера без снятия напряжения питания.
    2. Второй способ подразумевает подачу сигнала с широтно-импульсного преобразователя с выходной частотой 100-20000 Гц, яркость будет определяться коэффициентом заполнения (скважностью импульсов). Например, если высокий уровень будет держаться 1/4 часть периода, а низкий уровень, соответственно, 3/4, то это будет соответствовать уровню яркости в 25% от максимума. Надо понимать, что частота работы драйвера определяется индуктивностью дросселя и ни коем образом не зависит от частоты диммирования.

    Схема драйвера светодиодов PT4115 с регулятором яркости постоянным напряжением представлена на рисунке ниже:

    Такая схема регулировки яркости светодиодов прекрасно работает благодаря тому, что внутри микросхемы вывод DIM "подтянут" к шине 5В через резистор сопротивлением 200 кОм. Поэтому, когда ползунок потенциометра находится в крайнем нижнем положении, образуется делитель напряжения 200 + 200 кОм и на выводе DIM формируется потенциал 5/2=2.5В, что соответствует 100%-ой яркости.

    Как работает схема

    В первый момент времени, при подаче входного напряжения, ток через R и L равен нулю и встроенный в микросхему выходной ключ открыт. Ток через светодиоды начинает плавно нарастать. Скорость нарастания тока зависит от величины индуктивности и напряжения питания. Внутрисхемный компаратор сравнивает потенциалы до и после резистора R и, как только разница составит 115 мВ, на его выходе появляется низкий уровень, который закрывает выходной ключ.

    Благодаря запасенной в индуктивности энергии, ток через светодиоды не исчезает мгновенно, а начинает плавно уменьшаться. Постепенно уменьшается и падение напряжения на резисторе R. Как только оно достигнет величины в 85 мВ, компаратор снова выдаст сигнал на открытие выходного ключа. И весь цикл повторяется сначала.

    Если необходимо уменьшить размах пульсаций тока через светодиоды, допускается подключить конденсатор параллельно светодиодам. Чем больше будет его емкость, тем сильнее будет сглажена треугольная форма тока через светодиоды и тем более она станет похожа на синусоидальную. Конденсатор не влияет на рабочую частоту или эффективность работы драйвера, но увеличивает время установления заданного тока через светодиод.

    Важные нюансы сборки

    Важным элементом схемы является конденсатор C1. Он не просто сглаживает пульсации, но и компенсирует энергию, накопленную в катушке индуктивности в момент закрытия выходного ключа. Без C1 запасенная в дросселе энергия поступит через диод Шоттки на шину питания и может спровоцировать пробой микросхемы. Поэтому если включить драйвер без шунтирующего питание конденсатора, микросхема почти гарантированно накроется. И чем больше индуктивность дросселя, тем больше шансов спалить микруху.

    Минимальная емкость конденсатора C1 - 4.7 мкФ (а при питании схемы пульсирующим напряжением после диодного моста - не менее 100 мкФ).

    Конденсатор должен располагаться как можно ближе к микросхеме и иметь как можно более низкое значение ESR (т.е. танталовые кондеры приветствуются).

    Также очень важно ответственно подойти к выбору диода. Он должен иметь малое прямое падение напряжения, короткое время восстановления во время переключения и стабильность параметров при повышении температуры p-n перехода, чтобы не допустить увеличения тока утечки.

    В принципе, можно взять и обычный диод, но лучше всего под эти требования подходят диоды Шоттки. Например, STPS2H100A в SMD-исполнении (прямое напряжение 0.65V, обратное - 100V, ток в импульсе до 75А, рабочая температура до 156°C) или FR103 в корпусе DO-41 (обратное напряжение до 200V, ток до 30А, температура до 150°C). Очень неплохо себя показали распространенные SS34 , которые можно надергать из старых плат или купить целую пачку за 90 рублей .

    Индуктивность дросселя зависит от выходного тока (см. таблицу ниже). Неверно выбранное значение индуктивности может привести к увеличению рассеиваемой на микросхеме мощности и выходу за пределы рабочего температурного режима.

    При перегреве выше 160°C микросхема автоматически выключится и будет находиться в выключенном состоянии до тех пор пока не остынет до 140°C, после чего запустится автоматически.

    Несмотря на имеющиеся табличные данные, допускается монтаж катушки с отклонением индуктивности в большую сторону от номинала. При этом изменяется КПД всей схемы, но она остается работоспособной.

    Дроссель можно взять фабричный, а можно сделать своими руками из ферритового кольца от сгоревшей материнской платы и провода ПЭЛ-0,35.

    Если важна максимальная автономность устройства (переносные светильники, фонари), то, в целях повышения эффективности схемы, имеет смысл потратить время на тщательный подбор дросселя. На малых токах индуктивность должна быть больше, чтобы минимизировать погрешности управления током, возникающие из-за задержки при переключении транзистора.

    Дроссель должен располагаться как можно ближе к выводу SW, в идеале - подключен напрямую к нему.

    И, наконец, самый прецизионный элемент схемы драйвера светодиода - резистор R. Как уже было сказано, его минимальное значение равно 0,082 Ом, что соответствует току 1,2 А.

    К сожалению, не всегда удается найти резистор подходящего номинала, поэтому самое время вспомнить формулы расчета эквивалентного сопротивления при последовательном и параллельном включении резисторов:

    • R посл = R 1 +R 2 +…+R n ;
    • R пар = (R 1 xR 2) / (R 1 +R 2).

    Комбинируя различные способы включения, можно получить требуемое сопротивление из нескольких имеющихся под рукой резисторов.

    Важно так развести плату, чтобы ток диода Шоттки не протекал по дорожке между R и VIN, так как это может привести к погрешностям измерения тока нагрузки.

    Низкая стоимость, высокая надежность и стабильность характеристик драйвера на РТ4115 способствует его повсеместному использованию в светодиодных лампах. Практически каждая вторая 12-вольтовая LED-лампа с цоколем MR16 собрана на PT4115 (или СL6808).

    Сопротивление токозадающего резистора (в Омах) рассчитывается точно по такой же формуле:

    R = 0.1 / I LED [A]

    Типовая схема включения выглядит так:

    Как видите, все очень похоже на схему светодиодной лампы с драйвером на РТ4515. Описание работы, уровни сигналов, особенности используемых элементов и компоновки печатной платы точно такие же как у , поэтому повторяться не имеет смысла.

    CL6807 продают по 12 руб/шт, надо только смотреть, чтоб не подсунули паяные (рекомендую брать ).

    SN3350

    SN3350 - очередная недорогая микросхема для светодиодных драйверов (13 руб/штучка). Является практически полным аналогом PT4115 с той лишь разницей, что напряжение питания может лежать в диапазоне от 6 до 40 вольт, а максимальный выходной ток ограничен 750 миллиамперами (длительный ток не должен превышать 700 мА).

    Как и все вышеописанные микросхемы, SN3350 представляет собой импульсный step-down преобразователь с функцией стабилизации выходного тока. Как обычно, ток в нагрузке (а в нашем случае в роли нагрузки выступают один или несколько светодиодов) задается сопротивлением резистора R:

    R = 0.1 / I LED

    Чтобы не превысить значение максимального выходного тока, сопротивление R не должно быть ниже 0.15 Ом.

    Микросхема выпускается в двух корпусах: SOT23-5 (максимум 350 мА) и SOT89-5 (700 мА).

    Как обычно, подавая постоянное напряжение на вывод ADJ, мы превращаем схему в простейший регулируемый драйвер для светодиодов.

    Особенностью данной микросхемы является несколько иной диапазон регулировки: от 25% (0.3В) до 100% (1.2В). При снижении потенциала на выводе ADJ до 0.2В, микросхема переходит в спящий режим с потреблением в районе 60 мкА.

    Типовая схема включения:

    Остальные подробности смотрите в спецификации на микросхему (pdf-файл).

    ZXLD1350

    Не смотря на то, что эта микросхема является очередным клоном , некоторые отличия в технических характеристиках не допускают их прямую замену друг на друга.

    Вот главные отличия:

    • микросхема стартует уже при 4.8В, но на нормальный режим работы выходит только при напряжении питания от 7 до 30 Вольт (на полсекунды допускается подавать до 40В);
    • максимальный ток нагрузки - 350 мА;
    • сопротивление выходного ключа в открытом состоянии - 1.5 - 2 Ома;
    • изменением потенциала на выводе ADJ от 0.3 до 2.5В можно менять выходной ток (яркость светодиода) в диапазоне от 25 до 200%. При напряжении 0.2В в течении, как минимум, 100 мкс, драйвер переходит в спящий режим с низким потреблением энергопотреблением (порядка 15-20 мкА);
    • если регулировка осуществляется ШИМ-сигналом, то при частоте следования импульсов ниже 500 Гц, диапазон изменения яркости составляет 1-100%. Если же частота выше 10 кГц, то от 25% до 100%;

    Максимальное напряжение, которое можно подавать на вход регулировки яркости (ADJ) составляет 6В. При этом в диапазоне от 2.5 до 6В драйвер выдает максимальный ток, который задан токоограничительным резистором. Сопротивление резистора рассчитывается точно так же, как во всех вышеперечисленных микросхемах:

    R = 0.1 / I LED

    Минимальное сопротивление резистора - 0.27 Ом.

    Типовая схема включения ничем не отличается от своих собратьев:

    Без конденсатора С1 подавать питание не схему НЕЛЬЗЯ!!! В лучшем случае микросхема будет перегреваться и выдавать нестабильные характеристики. В худшем случае - мгновенно выйдет из строя.

    Более подробные характеристики ZXLD1350 можно найти в даташите на эту микросхему .

    Стоимость микросхемы неоправданно высокая (), при том, что выходной ток довольно небольшой. В общем, сильно на любителя. Я б не связывался.

    QX5241

    QX5241 - это китайский аналог MAX16819 (MAX16820), но в более удобном корпусе. Также выпускается под наименованиями KF5241, 5241B. Имеет маркировку "5241a" (см. фото).

    В одном известном магазине их продают чуть ли не на вес (10 штук за 90 руб).

    Драйвер работает по точно такому же принципу, как и все вышеописанные (понижающий преобразователь непрерывного действия), однако не содержит в своем составе выходной ключ, поэтому для работы требуется подключение внешнего полевого транзистора.

    Можно взять любой N-канальный MOSFET с подходящим током стока и напряжением сток-исток. Подойдут, например, такие: SQ2310ES (до 20V!!!), 40N06 , IRF7413 , IPD090N03L , IRF7201 . Вообще, чем ниже будет напряжение открытия, тем лучше.

    Вот некоторые ключевые характеристики LED-драйвера на QX5241:

    • максимальный выходной ток - 2.5 А;
    • КПД до 96%;
    • максимальная частота диммирования - 5 кГц;
    • максимальная рабочая частота преобразователя - 1 МГц;
    • точность стабилизации тока через светодиоды - 1%;
    • напряжение питания - 5.5 - 36 Вольт (нормально работает и при 38!);
    • выходной ток рассчитывается по формуле: R = 0.2 / I LED

    Более подробно читайте в спецификации (на инглише).

    Светодиодный драйвер на QX5241 содержит мало деталей и собирается всегда по такой схеме:

    Микросхема 5241 бывает только в корпусе SOT23-6, так что со паяльником для пайки кастрюль к ней лучше не подходить. После монтажа плату следует хорошенько промывать от флюса, любые непонятные загрязнения могут негативно сказываться на режиме работы микросхемы.

    Разница между питающим напряжением и суммарным падением напряжения на диодах должно быть вольта 4 (или больше). Если меньше - то наблюдаются какие-то глюки в работе (нестабильность тока и свист дросселя). Так что берите с запасом. Причем, чем больше выходной ток, тем больше запас по напряжению. Хотя, возможно, мне просто попался неудачный экземпляр микросхемы.

    Если входное напряжение меньше, чем общее падение на светодиодах, то генерация срывается. При этом выходной полевик полностью открывается и светодиоды светятся (естественно, не на полную мощность, так как напряжения маловато).

    AL9910

    Diodes Incorporated создала одну весьма интересную микросхему драйвера светодиодов: AL9910. Любопытна она тем, что ее рабочий диапазон напряжений позволяет подключать ее прямо к сети 220В (через простой диодный выпрямитель).

    Вот ее основные характеристики:

    • входное напряжение - до 500В (до 277В для переменки);
    • встроенный стабилизатор напряжения для питания микросхемы, не требующий гасящего резистора;
    • возможность регулировки яркости путем изменения потенциала на управляющей ноге от 0.045 до 0.25В;
    • встроенная защита от перегрева (срабатывает при 150°С);
    • рабочая частота (25-300 кГц) задается внешним резистором;
    • для работы необходим внешний полевой транзистор;
    • выпускается в восьминогих корпусах SO-8 и SO-8EP.

    Драйвер, собранный на микросхеме AL9910 не имеет гальванической развязки с сетью, поэтому должен использоваться только там, где невозможно прямое прикосновение к элементам схемы.