Акустическая волна и ее свойства. Понятие об акустических колебаниях и волнах Поверхностные акустические волны

Введение

Упругость - это свойство твердых тел восстанавливать свои форму и объем (а жидкостей и газов - только объем) после прекращения действия внешних сил. Среду, обладающую упругостью, называют упругой средой. Упругие колебания - это колебания механических систем, упругой среды или ее части, возникающие под действием механического возмущения. Упругие или акустические волны - механические возмущения, распространяющиеся в упругой среде. Частный случай акустических волн - слышимый человеком звук, отсюда происходит термин акустика (от греч. akustikos- слуховой) в широком смысле слова - учение об упругих волнах, в узком - учение о звуке. В зависимости от частоты упругие колебания и волны называют по-разному.

Таблица 1 - Диапазоны частот упругих колебаний

Упругие колебания и акустические волны, особенно ультразвукового диапазона, широко применяют в технике. Мощные ультразвуковые колебания низкой частоты применяют для локального разрушения хрупких прочных материалов (ультразвуковая долбежка); диспергирования (тонкого измельчения твердых или жидких тел в какой-либо среде, например жиров в воде); коагуляции (укрупнения частиц вещества, например, дыма) и других целей. Другая область применения акустических колебаний и волн - контроль и измерение. Сюда относят звуковую и ультразвуковую локацию, ультразвуковую медицинскую диагностику, контроль уровня жидкости, скорости потока, давления, температуры в сосудах и трубопроводах, а также использование акустических колебаний и волн для неразрушающего контроля (НК).

В своей контрольной работе я планирую рассмотреть акустические методы контроля материалов, их типы и особенности.


1. Типы акустических волн

Методы акустического контроля используют волны малой амплитуды. Это область линейной акустики, где напряжение (или давление) пропорционально деформации. Область колебаний с большими амплитудами или интенсивностями, где такая пропорциональность отсутствует, относится к нелинейной акустике.

В неограниченной твердой среде существует два типа волн, которые распространяются с разными скоростями: продольные и поперечные.

Рис. 1 - Схематическое изображение продольных (а) и поперечных (б) волн

Волну u l называют продольной волной или волной расширения-сжатия (рис. 1. а), потому что направление колебаний в волне совпадает с направлением ее распространения.

Волну u t называют поперечной или волной сдвига (рис. 1. б). Направление колебаний в ней перпендикулярно направлению распространения волны, а деформации в ней сдвиговые. В жидкостях и газах поперечных волн не существует, так как в этих средах отсутствует упругость формы. Продольные и поперечные волны (их обобщенное название - объемные волны) наиболее широко используют для контроля материалов. Эти волны лучше всего выявляют дефекты при нормальном падении на их поверхность.

Вдоль поверхности твердого тела распространяются поверхностные (волны Рэлея) и головные (ползущие, квазиоднородные) волны.


Рис. 2 - Схематическое изображение волн на свободной поверхности твердого тела: а - рэлеевский, б - головной

Поверхностную волну успешно применяют для выявления дефектов вблизи поверхности изделия. Она избирательно реагирует на дефекты в зависимости от глубины их залегания. Дефекты, расположенные на поверхности, дают максимальное отражение, а на глубине больше длины волны практически не выявляются.

Квазиоднородная (головная) волна почти не реагирует на поверхностные дефекты и неровности поверхности, в то же время с ее помощью можно обнаружить подповерхностные дефекты в слое, начиная от глубины порядка 1... 2 мм. Контролю тонких изделий такими волнами мешают боковые поперечные волны, которые отражаются от противоположной поверхности ОК и дают ложные сигналы.

Если между собой граничат две твердые среды (рис. 3, в), модули упругости и плотности которых не сильно отличаются, то вдоль границы распространяется волна Стоунли (или Стонсли), Такие волны находят применение для контроля соединения биметаллов.

Поперечные волны, распространяющиеся вдоль границы раздела двух сред и имеющие горизонтальную поляризацию, называют волнами Лява . Они возникают, когда на поверхности твердого полупространства имеется слой из твердого материала скорость распространения в котором поперечных волн меньше, чем в полупространстве. Глубина проникновения волны в полупространство возрастает с уменьшением толщины слоя. В отсутствие слоя волна Лява в полупространстве превращается в объемную, т.е. в плоскую, горизонтально поляризованную, поперечную волну. Волны Лява находят применение для контроля качества покрытий (плакировок), наносимых на поверхность.


Рис. 3 - Волны на границе двух сред: а - затухающая рэлеевского типа на границе твердое тело - жидкость, б - слабозатухающая на той же границе, в - волна Стоунли на границе двух твердых тел

Если твердое тело имеет две свободные поверхности (пластина), то в нем могут существовать специфические типы упругих волн. Их называют волнами в пластинах или волнами Лэмба и относят к нормальным волнам, т. е. волнам, бегущим (переносящим энергию) вдоль пластины, слоя или стержня, и стоячим (не переносящим энергии) в перпендикулярном направлении. Нормальные волны распространяются в пластине, как в волноводе, на большие расстояния. Их успешно применяют для контроля листов, оболочек, труб толщиной 3... 5 мм и менее.

Также выделяют особый вид волн – ультразвуковые волны. Они по своей природе не отличаются от волн слышимого диапазона и подчиняются тем же физическим законам. Но, у ультразвука есть специфические особенности, которые определили его широкое применение в науке и технике. Отражение, преломление и возможность фокусировки ультразвука используется в ультразвуковой дефектоскопии, в ультразвуковых акустических микроскопах, в медицинской диагностике, для изучения макронеоднородностей вещества. Наличие неоднородностей и их координаты определяются по отражённым сигналам или по структуре тени.

2. Преломление, отражение, дифракция, рефракция акустических волн

Преломле́ние - явление изменения пути следования светового луча (или других волн), возникающее на границе раздела двух прозрачных (проницаемых для этих волн) сред или в толще среды с непрерывно изменяющимися свойствами.

Преломление звука - изменение направления распространения звуковой волны при её прохождении через границу раздела двух сред.

При падении на границу раздела двух однородных сред (воздух – стена, воздух – водная поверхность и т.д.) плоская звуковая волна может частично отражаться и частично преломляться (проходить во вторую среду.

Необходимым условием для преломления является различие скоростей распространения звука в обеих средах.

По закону преломления, преломленный луч (OL") лежит в одной плоскости с падающим лучом (OL) и нормалью к поверхности раздела сред, проведенной в точке падения O. Отношение синуса угла падения α к синусу угла преломления β равно отношению скоростей звуковых волн в первой и второй средах C 1 и C 2 (закон Снеллиуса):

sinα/sinβ=C 1 /C 2

Из закона преломления следует, что чем выше скорость звука в той или иной среде, тем больше угол преломления.

Если скорость звука во второй среде меньше, чем в первой, то угол преломления будет меньше угла падения, если же скорость во второй среде больше, то угол преломления будет больше угла падения.Если удельное акустическое сопротивление обеих сред близки друг к другу, то почти вся энергия перейдёт из одной среды в другую.

Важной характеристикой среды является удельный акустический импеданс, определяющей условия преломления звука на ее границе. При нормальном падении плоской волны на плоскую границу раздела двух сред величина коэффициента преломления определяется только отношением акустических импедансов этих сред. Если акустические импедансы сред равны, то волна проходит границу без отражения. При нормальном падение волны на границу двух сред коэффициент прохождения W волны определяются только акустическими импедансами данных сред Z 1 =ρ 1 С 1 и Z 2 =ρ 2 С 2 . Формула Френеля (для нормального падения) имеет вид:

W=2Z 2 /(Z 2 +Z 1).

Формула Френеля для волны падающей на границу раздела под углом:

W=2Z 2 cosβ/(Z 2 cosβ+Z 1 cosα).

ОТРАЖЕНИЕ ЗВУКА - явление, возникающее при падении звуковой волны на границу раздела двух упругих сред и состоящее в образовании волн, распространяющихся от границы раздела в ту же среду, из которой пришла падающая волна. Как правило, отражение звукасопровождается образованием преломлённых волн во второй среде. Частный случай отражения звука- отражение от свободной поверхности. Обычно рассматривается отражение на плоских границах раздела, однако можно говорить об отражении звука от препятствий произвольной формы, если размеры препятствия значительно больше длины звуковой волны. В противном случае имеет место рассеяние звука или дифракция звука.

До сих пор шла речь об объемных акустических волнах и, распространяющихся в объеме изотропного твердого тела. В 1885 г. английский физик Рэлей теоретически предсказал возможность распространения в тонком поверхностном слое твердого тела, граничащего с воздухом, поверхностных акустических волн, которые принято называть рэлеевскими волнами - волнами. В задаче Рэлея ограничимся постановкой задачи и ее конечными результатами. Имеется плоская граница вакуум - изотропная твердая среда. Граница раздела совпадает с плоскостью, ось направлена вглубь твердой среды.

Исходными для решения задачи являются уравнение движения Ламе (4) и граничное условие, где nj - компоненты единичной нормали к поверхности. На границе с вакуумом внешние силы Fi отсутствуют, а нормаль (рис. 3) имеет одну составляющую по z.

Для гармонических волн исходные волновые уравнения и граничные условия примут вид

Решение ищется в виде плоских гармонических волн, бегущих вдоль оси x в твердом полупространстве.

Для поверхностного эффекта амплитуды должны убывать вдоль нормали к границе

Первый тип решения поставленной задачи имеет вид

где В - амплитудная постоянная, определяемая условиями возбуждения волны. Такое решение соответствует однородной объемной (нет убывания амплитуды вдоль нормали к поверхности) сдвиговой волне поляризованной в направлении, перпендикулярном направлению распространения вдоль x и нормали к поверхности. Эта волна является неустойчивой в том отношении, что небольшие отклонения в постановке задачи (например, нагрузка поверхностным слоем или наличие в среде пьезоэффекта) могут сделать эту волну поверхностной. Второй тип решения задачи определяет поверхностную волну Рэлея.

Волновые векторы, и связаны между собой в силу граничных условий и рэлеевская волна представляет собой сложную акустическую волну.

Скорость рэлеевской волны определяется выражением

При изменении коэффициента Пуассона примерно скорость изменяется от до. Скорость зависит только от упругих свойств твердого тела и не зависит от частоты и рэлеевская волна не обладает дисперсией. Амплитуда волны быстро убывает с увеличением расстояния от поверхности. В рэлеевской волне частицы среды движутся согласно (14), (15) по эллиптическим траекториям, большая ось эллипса перпендикулярна поверхности и направление движения частиц на поверхности происходит против часовой стрелки относительно направления распространения волны. Рэлеевские волны были обнаружены при сейсмических колебаниях земной коры, когда были зарегистрированы три сигнала. Первый из них связан с прохождением продольной волны, второй сигнал связан с поперечными волнами, скорость которых меньше, чем у продольных волн. И третий сигнал обусловлен распространением волн по поверхности Земли. Кроме волн существует целый ряд других типов поверхностных акустических волн (ПАВ). Поверхностные поперечные волны в твердом слое, лежащем на твердом упругом полупространстве (волны Лява), волны в пластинках (волны Лэмба), волны на искривленных поверхностях, клиновые волны и т.д. Энергия ПАВ сосредоточена в узком поверхностном слое толщиной порядка длины волны, они не испытывают (в отличии от объемных волн) больших потерь на геометрическое расхождение в объем полупространства и поэтому они могут распространяться на большие расстояния. ПАВ легко доступны для техники, как бы «их легко взять». Эти волны широко используются в акустоэлектронике.

Основная статья: Поверхностные акустические волны в пьезоэлектриках

Поверхностные акустические волны в пьезоэлектриках (линейная среда) полностью характеризуются уравнениями для смещений U i и потенциала φ :

где T , S - тензоры напряжений и деформаций; E , D - векторы напряженности и индукции электрического поля; C , e , ε - тензоры модулей упругости, пьезомодулей и диэлектрической проницаемости соответственно; ρ - плотность среды.

Упругие волны, распространяющиеся вдоль свободной границы твердого тела или вдоль границы твердого тела с другими средами

Анимация

Описание

Существование поверхностных волн (ПВ) является следствием взаимодействия продольных и (или) поперечных упругих волн при отражении этих волн от плоской границы между различными средами при определенных граничных условиях для компонент смещения. ПВ в твердых телах бывают двух классов: с вертикальной поляризацией, у которых вектор колебательного смещения частиц среды расположен в плоскости, перпендикулярной к граничной поверхности, и с горизонтальной поляризацией, у которых вектор смещения частиц среды параллелен граничной поверхности.

К наиболее часто встречающимся частным случаям ПВ можно отнести следующие.

1) Волны Рэлея (или рэлеевские), распространяющиеся вдоль границы твердого тела с вакуумом или достаточно разреженной газовой средой. Энергия этих волн локализована в поверхностном слое толщиной от l до 2l, где l - длина волны. Частицы в волне Рэлея движутся по эллипсам, большая полуось w которых перпендикулярна границе, а малая u - параллельна направлению распространения волны (рис. 1а).

Поверхностная упругая волна Рэлея на свободной границе твердого тела

Обозначения:

Фазовая скорость волн Рэлея cR » 0.9ct, где ct - фазовая скорость плоской поперечной волны.

2) Затухающие волны рэлеевского типа на границе твердого тела с жидкостью при условии, что фазовая скорость в жидкости сL < сR в твердом теле (что справедливо почти для всех реальных сред). Эта волна непрерывно излучает энергию в жидкость, образуя в ней отходящую от границы неоднородную волну (рис. 1б).

Поверхностная упругая затухающая волна рэлеевского типа на границе твердого тела и жидкости

Обозначения:

х - направление распространения волны;

u,w - компоненты смещения частиц;

кривые изображают ход изменения амплитуды смещений при удалении от границы;

наклонные линии - фронты отходящей волны.

Фазовая скорость этой волны с точностью до процентов равна сR , коэффициент затухания на длине волны al ~ 0.1. Распределение по глубине смещений и напряжений - такое же, как в волне Рэлея.

3) Незатухающая волна с вертикальной поляризацией, бегущая по границе жидкости и твердого тела со скоростью, меньшей сL (и, соответственно, меньшей, чем скорости продольной и поперечной волн в твердом теле). Структура этой ПВ совсем другая, чем у рэлеевской волны. Она состоит из слабо неоднородной волны в жидкости, амплитуда которой медленно убывает при удалении от границы, и двух сильно неоднородных продольной и поперечной волн в твердом теле (рис. 1в).

Незатухающая ПВ на границе твердого тела и жидкости

Обозначения:

х - направление распространения волны;

u,w - компоненты смещения частиц;

кривые изображают ход изменения амплитуды смещений при удалении от границы.

Энергия волны и движение частиц локализованы в основном в жидкости.

4) Волна Стонли, распространяющаяся вдоль плоской границы двух твердых сред, модули упругости и плотности которых не сильно различаются. Такая волна состоит (рис. 1г) как бы из двух рэлеевских волн - по одной в каждой среде.

Поверхностная упругая волна Стонли на границе двух твердых сред

Обозначения:

х - направление распространения волны;

u,w - компоненты смещения частиц;

кривые изображают ход изменения амплитуды смещений при удалении от границы.

Вертикальные и горизонтальные компоненты смещений в каждой среде убывают при удалении от границы так, что энергия волны оказывается сосредоточенной в двух граничных слоях толщиной ~ l. Фазовая скорость волны Стонли меньше значений фазовых скоростей продольных и поперечных волн в обеих граничащих средах.

5) Волны Лява - ПВ с горизонтальной поляризацией, которые могут распространяться на границе твердого полупространства с твердым слоем (рис. 1д).

Поверхностная упругая волна Лява на границе "твердое полупространство - твердый слой"

Обозначения:

х - направление распространения волны;

кривые изображают ход изменения амплитуды смещений при удалении от границы.

Эти волны - чисто поперечные: в них имеется только одна компонента смещения v, а упругая деформация в волне Лява представляет собой чистый сдвиг. Смещения в слое (индекс 1) и в полупространстве (индекс 2) описываются выражениями:

v1 = (A¤cos(s1h)) cos(s1(h - z))sin(wt - kx);

v2 = AЧexp(s2 z) sin(wt - kx),

где t - время;

w - круговая частота;

s1 = (kt12 - k2)1/2;

s2 = (k2 - kt22)1/2;

k - волновое число волны Лява;

kt1, kt2 - волновые числа поперечных волн в слое и в полупространстве соответственно;

h - толщина слоя;

А - произвольная постоянная.

Из выражений для v1 и v2 видно, что смещения в слое распределены по косинусу, а в полупространстве экспоненциально убывают с глубиной. Для волн Лява характерна дисперсия скорости. При малых толщинах слоя фазовая скорость волны Лява стремится к фазовой скорости объемной поперечной волны в полупространстве. При wh¤ct2 >>1 волны Лява существуют в виде нескольких модификаций, каждая из которых соответствует нормальной волне определенного порядка.

К ПВ относят и волны на свободной поверхности жидкости или на границе раздела двух несмешивающихся жидкостей. Такие ПВ возникают под влиянием внешнего воздействия, например, ветра, выводящего поверхность жидкости из равновесного состояния. В этом случае, однако, упругие волны существовать не могут. В зависимости от природы возвращающих сил различают 3 типа ПВ: гравитационные, обусловленные в основном силой тяжести; капиллярные, обусловленные в основном силами поверхностного натяжения; гравитационно-капиллярные (см. описание ФЭ "Поверхностные волны в жидкости").

Временные характеристики

Время инициации (log to от -3 до -1);

Время существования (log tc от -1 до 3);

Время деградации (log td от -1 до 1);

Время оптимального проявления (log tk от 0 до 1).

Диаграмма:

Волну Рэлея можно получить на свободной поверхности достаточно протяженного твердого тела (граница "твердая среда - воздух"). Для этого излучатель упругих волн (продольных, поперечных) размещают на поверхности тела (рис. 2), хотя, в принципе, источник волн может находиться и внутри среды на некоторой глубине (модель очага землетрясения).

Генерирование волны Рэлея на свободной границе твердого тела

Применение эффекта

Поскольку сейсмические ПВ слабо затухают с расстоянием, ПВ, прежде всего Рэлея и Лява, используют в геофизике для определения строения земной коры. В ультразвуковой дефектоскопии ПВ используют для всестороннего неразрушающего контроля поверхности и поверхностного слоя образца. В акустоэлектронике (АЭ) с помощью ПВ можно создавать микроэлектронные схемы обработки электрических сигналов. Преимуществами ПВ в устройствах АЭ являются малые потери на преобразование при возбуждении и приеме ПВ, доступность волнового фронта, что позволяет снимать сигнал и управлять распространением волны в любых точках звукопровода и т.д.

Пример АЭ устройств на ПВ: резонатор (рис. 3).

Резонансная структура на поверхностных акустических волнах

Обозначения:

1 - преобразователь;

2 - система отражателей (металлические электроды или канавки).

Добротность до 104, низкие потери (менее 5 дБ), диапазон частот 30 - 1000 МГц. Принцип действия. Между отражателями 2 создается стоячая ПВ, которая генерируется и принимается преобразователем 1.

Анимация

Описание

Упругие сейсмические волны (СВ), возникающие вследствие возмущений земной коры (очаг землетрясения, взрыв), принадлежат к нескольким типам (рис. 1).

Характер смещения частиц среды в сейсмических волнах различных типов

Обозначения:

P - продольная волна Лява;

S - поперечная волна Лява;

L - поверхностная волна Лява.

По характеру пути распространения СВ делятся на объемные и поверхностные. В свою очередь объемные волны подразделяются на продольные (Р - волны) и поперечные (S - волны). Поверхностные волны возникают в результате взаимодействия объемных волн с поверхностью Земли или сейсмическими границами (типа слой - полупространство и т.п.); к наиболее распространенным типам поверхностных волн относятся волны Рэлея и волны Лява.

Объемные волны распространяются по всей толще Земли за исключением ядра, не пропускающего поперечные волны (поэтому считают, что ядро Земли находится в жидком состоянии). Р - волны связаны с изменением объема и распространяются со скоростью:

VP = [(l + 2m) /r]1/2,

где l - модуль сжатия;

m - модуль сдвига;

r - плотность среды.

Скорость поперечных волн, не связанных с изменением объема, равна:

Движение частиц в S - волне происходит в плоскости, перпендикулярной направлению распространения волны. В сферически - симметричных моделях Земли луч, вдоль которого распространяется волна, лежит в вертикальной плоскости. Составляющая смещения в волне S в этой плоскости обозначается SV, горизонтальная составляющая - SH.

Некоторые оболочки Земли обладают упругой анизотропией; в этом случае поперечная волна расщепляется на две волны с различными поляризациями и скоростями. Свойства земных недр изменяются по вертикали и горизонтали. Поэтому в процессе распространения объемные волны испытывают отражение, преломление, обмен (превращение P в S и наоборот), дифракцию и рассеяние. В результате запись СВ - сейсмограмма на большом расстоянии от источника распадается на ряд волновых пакетов или фаз (рис. 2).

Типичная сейсмограмма

Отождествление фаз и определение координат источника выполняется с помощью набора стандартных таблиц (годографов), задающих время пробега волны как функцию расстояния и глубины источника.

Поверхностные волны формируются в результате интерференции объемных волн и распространяются в верхней оболочке Земли, эффективная толщина которой зависит от длины волны. Характерной особенностью поверхностных волн является дисперсия скорости. Волны Рэлея и Лява различаются скоростью распространения и поляризацией колебаний частиц среды. Траектория частицы в волне Рэлея имеет составляющие SV и вертикальную. Волны Лява имеют поляризацию SH.

Частотный спектр сейсмических колебаний лежит в диапазоне от сотен Гц до ~ 3 *10-4 Гц. Высокочастотные СВ (порядка сотен Гц) могут быть зарегистрированы только на малых расстояниях от источника. В низкочастотной области (с периодами порядка сотен секунд и более) СВ приобретают характер собственных колебаний Земли, которые делятся на сфероидальные, имеющие поляризацию волн Рэлея, и крутильные, с поляризацией волн Лява. Известный к настоящему времени спектр сфероидальных и крутильных колебаний Земли насчитывает несколько тысяч собственных частот.

Временные характеристики

Время инициации (log to от -3 до 3);

Время существования (log tc от 1 до 5);

Время деградации (log td от -1 до 3);

Время оптимального проявления (log tk от 1 до 3).

Диаграмма:

Технические реализации эффекта

Техническая реализация эффекта

Генерирование СВ может быть осуществлено с помощью взрывов. В зависимости от мощности последних возможна регистрация различных типов СВ на различных расстояниях от точки взрыва. Так, волны от мощных взрывов, в том числе ядерных, проходят через все оболочки Земли и даже ядро (только P - волны), что позволяет использовать такие взрывы в для изучения внутреннего строения Земли.

Применение эффекта

По характеру распространения сейсмических волн различных типов можно получить информацию о внутреннем строении Земли, в частности, о месторождениях полезных ископаемых. Поверхностные волны, распространяющиеся на большие расстояния с относительно малым затуханием, обладают свойством дисперсии скорости; по дисперсионным зависимостям волн Рэлея определяют внутреннее строение земной коры (до глубин порядка длины волны). Методы отраженных и преломленных волн используют в сейсморазведке различных полезных ископаемых.

Используются различные формы звуковых сигналов: синусоидальный (приятен для восприятия), прямоугольный (пожалуй, наиболее действенный, хотя и неприятен на слух), треугольный (более приближен к естественным видам звуковых сигналов), пилообразный (оказывает активизирующее действие), а также различные формы произвольных сигналов, в т.ч. «розовый» шумы (похож на шум моря, водопада, дождя, лиственного леса), «белый» шум (похож на шум телевизора при отключенной антенне) (рис. 6).

Рис. 6. Форма звуковой волны.

Прямоугольный сигнал эффективен для отвлечения сознания от посторонних мыслей и быстрейшего достижения измененных состояний сознания.

Воздействие «розового» шума помогает преодолеть депрессию, отвлечься от негативных мыслей, достичь состояния релаксации.

Требуется субъективный подбор, попробуйте все формы.

Громкость

Подбирается индивидуально с помощью регулятора.

Общие закономерности: чем меньше частота стимуляции, тем выше громкость.

Бинауральная стимуляция

При формировании звуковых тонов в наушниках с различной частотой дополнительно к звучанию этих тонов возникает ощущение звуковых пульсаций с частотой, равной разности частоты звука в правом и левом наушнике. Эта особенность слухового восприятия человеческого уха широко используется не только при проведении АВС, но и при формировании аудиозаписей на специальных релаксационных кассетах.

Например, если в левое ухо подавать тон с частотой 200 Гц, а в правое – 208 Гц, то человек слышит звуковой тон с частотой (200+208)/2=204 Гц с ощущением модулированных звуковых пульсаций с частотой 208-200=8 Гц (рис. 7).

X W

Рис. 7. Эффект бинауральной стимуляции

При использовании звуковых сигналов специальной формы (генерация многотонального звука) возможно проведение двойной, тройной и т.д. бинауральной стимуляции. При этом бинауральный ритм формируется с заданной частотой и дополнительно с частотой меньшей в 2, 3 и т.д. раз соответственно.

Наибольший эффект проявления бинауральных ритмов отмечается при несущей частоте 440 Гц и разнице частот до 25 Гц.

Стимуляция бинауральными ритмами облегчает доступ к измененным состояниям сознания. Этот процесс эффективен и безопасен, имеет самые разнообразные приложения, в том числе и для расслабления, медитации, развития интуиции, повышения эффективности обучения, улучшения сна, самочувствия и исследования расширенных состояний сознания.

При прослушивании бинауральных ритмов можно услышать у себя в голове самые различные звуки. Эти звуки есть продукт только вашего воображения, их нет в программе, но именно они позволяют достичь требуемого эффекта по синхронизации полушарий вашего мозга. Некоторым людям именно эти артефакты доставляют наибольшее удовольствие, другие не слышат их вовсе, но эффект синхронизации все равно присутствует. Еще один побочный эффект - это блуждание ума, когда в уме появляются совершенно невообразимые мысли. Можно не думать ни о чем конкретном, но мысли все равно будут очень интересными. Некоторые люди ощущают при этом "тепло" или "счастье", другие начинают вспоминать приятные эпизоды детства, даже те, которые, как казалось, уже навсегда забыты! После 15-минутной или более сессии вы можете почувствовать свое тело совершенно обновленным, легким, воздушным, с ясной головой. Некоторые считают, что ежедневная работа такого рода в течение 30 минут дает неуловимые, но стабильные перемены в вашей жизни: усиливается экстрасенсорное восприятие, и этот новый уровень сознания постепенно становится вашей нормой.

Будьте осторожны при использовании бинауральных ритмов с несущей частотой свыше 750 Гц и частотой стимуляции свыше 20 Гц. Такое сочетание может вызывать избыточное возбуждение.


ЭЛЕМЕНТЫ АКУСТИКИ

Упругие волны, распространяющиеся в воздухе с частотой от 20 до 20 000Гц, достигнув человеческого уха, вызывают звуковые ощущения. В соответствие с этим упругие волны в любой среде, имеющие частоту от 20 до 20 000Гц, называют звуковыми (акустическими) волнами, или просто звуком. Акустика - это раздел физики, изучающий особенности распространения звука в разных средах. Звуковая волна в газах и жидкостях может быть только продольной. Это волна сжатий и растяжений среды. В твердых телах распространяются как продольные, так и поперечные звуковые волны.

Воспринимаемые человеческим ухом звуковые волны различаются по высоте, тембру и громкости.

Всякий реальный звук представляет собой не простое гармоническое колебание, а является суперпозицией гармонических колебаний с различным набором частот. Набор частот, наблюдаемый в данном звуке, называют его акустическим спектром. Если в звуке присутствуют колебания всех частот в некотором интервале от до , спектр называется сплошным (рис. 2.13а). Если спектр состоит из дискретных значений частот (т.е значения отделены друг от друга интервалом), он называется линейчатым (рис.2.13 б). По оси абсцисс отложена частота колебаний, по оси ординат – интенсивность.

Сплошным акустическим спектром обладают шумы. Колебания с линейчатым спектром вызывают ощущение звука определенной высоты. Такой звук называется тональным. Высота тонального звука определяется основной, наименьшей частотой ( на рис.2.13.б). Относительная интенсивность обертонов (и т.д.) определяет окраску или тембр звука.

Упругая волна в газе представляет собой распространяющуюся в пространстве последовательность чередующихся областей сжатий и разряжений газа. Поэтому давление в каждой точке пространства испытывает периодически изменяющееся отклонение от среднего значения р , совпадающего с давлением, которое было в газе без распространения волн. Таким образом, мгновенное значение давления в некоторой точке пространства можно представить в виде: .

Рассмотрим звуковую волну, распространяющуюся вдоль оси Х . Выберем объем газа в виде цилиндра высотой с площадью основания S (рис.2.14). Масса газа, заключенного в этом объеме, , где - плотность невозмущенного волной газа. В виду малости ускорение во всех точках цилиндра можно считать одинаковым и равным . Сила, действующая на рассматриваемый объем, равна произведению площади основания цилиндра S на разность давлений в сечениях и : .

Уравнение динамики для выделенного объема по второму закону Ньютона имеет вид: , или

Чтобы решить это уравнение, найдем связь давления газа с относительным изменением его объема . Эта связь зависит от процесса сжатия или расширения газа. В звуковой волне сжатия и разряжения газа следуют друг за так часто, что смежные участки среды не успевают обмениваться теплом, и процесс можно считать адиабатным. Тогда связь между давлением и объемом данной массы газа принимает вид: , или , где γ- показатель адиабаты, равный отношению теплоемкостей газа в изобарном и изохорном процессах. После преобразования получаем . Учитывая, что , разложим функцию в ряд: Тогда получаем выражение , отсюда



Разность . Величина γ порядка единицы, поэтому , и условие физически означает, что отклонение давления много меньше самого давления. Продифференцировав выражение (2.49) по х , найдем , и уравнение (2.48) принимает вид: . Это волновое уравнение. Тогда скорость звуковой волны в газе . Подставив выражение для плотности из уравнения Менделеева –Клапейрона , получаем: , где μ – молярная масса газа. Таким образом, скорость звука в газе зависит от температуры и свойств газа (молярной массы и показателя адиабаты). При этом скорость звука не зависит от его частоты, т.е. звуковые волны не испытывают дисперсии.

Под интенсивностью звуковых волн понимают среднее значение объемной плотности энергии волны. Минимальная интенсивность, вызывающая звуковые ощущения, называется порогом слышимости. Она различна для разных людей и зависит от частоты звука. При больших интенсивностях волна перестает восприниматься как звук и вызывает в ухе лишь болевые ощущения. Интенсивность, при которой наступает болевое ощущение, называется порогом болевого ощущения. Уровень громкости определяется как логарифм отношения интенсивности данного звука к интенсивности звука, принятой за исходную: . Исходная интенсивность принимается равной , так как порог слышимости при частоте порядка 100Гц лежит на нулевом уровне (). Единица измерения - белл, единица в 10 раз меньшая, децибел (дб). Значение уровня громкости в децибелах . Звуковая волна вызывает слуховые ощущения в человеческом ухе при уровне громкости от 0 до 130дб.

Найдем связь между интенсивностью звуковых волн и амплитудой давления .

Интенсивность волны равна среднему значению плотности потока энергии: , где - плотность невозмущенного газа, А – амплитуда колебаний частиц, - частота, - фазовая скорость волны. Смещение частиц среды меняется по закону: . Тогда . Учитывая, что , получаем: . Таким образом, амплитуда колебаний частиц среды связана с амплитудой изменения давления соотношением: . Тогда интенсивность6

Любой объект, двигаясь в материальной среде, возбуждает в ней расходящиеся волны. Самолет, например, воздействует на молекулы воздуха в атмосфере. Из каждой точки пространства, где только что пролетел самолет, начинает во все стороны с равной скоростью расходиться акустическая волна, в строгом соответствии с законами распространения волн в воздушной среде. Таким образом, каждая точка траектории движения объекта в среде (в данном случае самолета) становится отдельным источником волны со сферическим фронтом.

При движении самолета на дозвуковых скоростях эти акустические волны распространяются как обычные концентрические круги по воде, и мы слышим привычный гул пролетающего самолета. Если же самолет летит на сверхзвуковой скорости, источник каждой следующей волны оказывается удален по траектории движения самолета на расстояние, превышающее то, которое к этому моменту успел покрыть фронт предыдущей акустической волны. Таким образом, волны уже не расходятся концентрическими кругами, их фронты пересекаются и взаимно усиливаются в результате резонанса, имеющего место на линии, направленной под острым углом назад по отношению к траектории движения. И так происходит непрерывно в процессе всего полета на сверхзвуковой скорости, в результате чего самолет оставляет за собой расходящийся шлейф резонансных волн вдоль конической поверхности, в вершине которой находится самолет. Сила звука в этом коническом фронте значительно превышает обычный шум, издаваемый самолетом в воздухе, а сам этот фронт называется ударной волной. Ударные волны, распространяясь в среде, оказывают резкое, а иногда и разрушительное воздействие на материальные объекты, встречающиеся на их пути. При пролете неподалеку сверхзвукового самолета, когда конический фронт ударной волны дойдет до вас, вы услышите и почувствуете резкий, мощный хлопок, похожий на взрыв, - звуковой ударЭто не взрыв, а результат резонансного наложения акустических волн: за долю мгновения вы слышите весь суммарный шум, изданный самолетом за достаточно длительный промежуток времени.

Конус фронта ударной волны называется конусом Маха. Угол φ между образующими конуса Маха и его осью определяется формулой: sin φ=,

где υ - скорость звука в среде, и - скорость самолета. Отношение скорости движущегося объекта к скорости звука в среде называется числом Маха: M = и /υ (соответственно, sin φ = 1/M) Нетрудно видеть, что у самолета, летящего со скоростью звука, М = 1, а при сверхзвуковых скоростях число Маха больше 1.

Ударные волны возникают не только в акустике. Например, если элементарная частица движется в среде со скоростью, превышающей скорость распространения света в этой среде, возникает ударная световая волна (излучение Черенкова). По этому излучению выявляют элементарные частицы и определяют скорость их движения.