Измерение сопротивлений на переменном токе. Измерение электрических сопротивлений

Определяющий работу любой цепи или установки.

Получение определенных величин сопротивлений при изготовлении электрических машин, аппаратов, приборов при монтаже и эксплуатации электроустановок является необходимой предпосылкой для обеспечения нормального режима их работы.

Одни сопротивления сохраняют свою величину практически неизменной, другие, наоборот, в очень сильной степени подвержены изменению от времени, от температуры, влажности, механических усилий и т. д. Поэтому, как при производстве электрических машин, аппаратов, приборов, так и при монтаже эксплуатации электроустановок неизбежно приходится производить измерение сопротивлений.

Весьма разнообразны условия и требования к производству измерений сопротивлений. В одних случаях нужна высокая точность, в других, наоборот, достаточно нахождение приближенного значения сопротивления.

В зависимости от величины делятся на три группы:

  • 1 ом и меньше - малые сопротивления,
  • от 1 ом до 0,1 Мом - средние сопротивления,
  • от 0,1 Мом и выше - большие сопротивления.

При измерении малых сопротивлений необходимо принимать меры для устранения влияния на результат измерения сопротивления соединительных проводов, контактов и термо-ЭДС.

При измерении средних сопротивлений можно не считаться с сопротивлениями соединительных проводов и контактов, можно не учитывать влияния сопротивления изоляции.

При измерении больших спротивлений необходимо учитывать наличие объемного и поверхностного сопротивлений, влияние температуры, влажности и других факторов.

Особенности измерения малых сопротивлений

К группе малых сопротивлений относятся: обмотки якорей электрических машин, сопротивления амперметров, шунтов, сопротивления обмоток трансформаторов тока, сопротивления коротких проводов шин и т. д.

При измерении малых сопротивлений всегда приходится считаться с возможностью влияния сопротивлений соединительных проводов и переходных сопротивлений на результат измерения.

Сопротивления измерительных проводов имеют значения 1 х 10 4 - 1 х 10 2 ом, переходные сопротивления - 1 х 10 5 - 1 х 10 2 ом.

Под переходными сопротивлениями или понимают сопротивления, которые встречает электрический ток при переходе с одного проводника на другой.

Переходные сопротивления зависят от величины поверхности соприкосновения, от ее характера и состояния - гладкая или шероховатая, чистая или загрязненная, а также от плотности соприкосновения, силы нажатия и т. д. Выясним на примере влияние переходных сопротивлений и сопротивлений соединительных проводов на результат измерения.

На рис. 1 дана схема для измерения сопротивления с применением образцовых приборов амперметра и вольтметра.

Рис. 1. Неправильная схема соединения для измерения малых сопротивлений амперметром и вольтметром.

Допустим, искомое сопротивление r х - 0,1 ом, а сопротивление вольтметра rv = 500 ом. Так как они соединены параллельно, то r х/rv = Iv/Ix = 0 ,1/500 = 0,0002, т. е. ток в вольтметре составляет 0,02% от тока в искомом сопротивлении. Таким образом, с точностью до 0,02% можно считать ток амперметра равным току в искомом сопротивлении.

Разделив показание вольтметра, присоединенного к точкам 1, 1" на показание амперметра, получим: U"v /Ia = r"x = r х + 2r пр + 2r к, где г"х - найденное значение искомого сопротивления; r пр - сопротивление соединительного провода; гк - сопротивление контакта.

Считая r пр = r к = 0,01 ом, получаем результат измерения г"х = 0,14 ом, откуда погрешность измерения, обусловленная сопротивлениями соединительных проводов и сопротивлениями контактов равна 40% - ((0,14 - 0,1)/0,1))х 100%.

Необходимо обратить внимание на то, что с уменьшением искомого сопротивления погрешность измерения от указанных выше причин увеличивается.

Присоединив вольтметр к токовым зажимам - точки 2 - 2 на рис. 1, т. е. к тем зажимам сопротивления rx , к которым присоединены провода цепи тока, получим показание вольтметра U"v меньше U"v на величину паления напряжения в соединительных проводах и, следовательно, найденное значение искомого сопротивления r х"= U""v /I а = rx + 2 r к будет содержать погрешность, обусловленную только сопротивлениями на контактах.

Присоединив вольтметр, как показано на рис. 2, к потенциальным зажимам, расположенным между токовыми, получим показание вольтметра U""" v меньше U"v на величину падения напряжения на сопротивлениях контактов и, следовательно, найденное значение искомого сопротивления r"""x = U""v/Ia = rx

Рис. 2. Правильная схема соединения для измерения малых сопротивлений амперметром и вольтметром

Таким образом, найденное значение будет равно действительному значению искомого сопротивления, так как вольтметр измерит действительное значение напряжения на искомом сопротивлении гх между его потенциальными зажимами.

Применение двух пар зажимов, токовых и потенциальных, является основным приемом для устранения влияния сопротивлений соединительных проводов и переходных сопротивлений на результат измерений малых сопротивлений.

Особенности измерения больших сопротивлений

Большими сопротивлениями обладают плохие проводники тока и изоляторы. При измерении сопротивлений проводников , изолирующих материалов и изделий из них приходится считаться с факторами, которые могут влиять на величину сопротивления их.

К числу таких факторов прежде всего относится температура, например проводимость электрокартона при температуре 20°С равна 1,64 х 10 -13 1/ом, а при температуре 40°С 21,3 х 10 -13 1/ом. Таким образом, изменение температуры на 20° С вызвало изменение сопротивления (проводимости) в 13 раз!

Цифры наглядно показывают, насколько опасен недоучет влияния температуры на результаты измерения. Точно так же весьма важным факторам, влияющим на величину сопротивления, является содержание влаги как в испытуемом материале, так и в воздухе.

Кроме того, на величину сопротивления могут влиять род тока, которым производится испытание, величина испытуемого напряжения, продолжительность действия напряжения и т. д.

При измерении сопротивлений изолирующих материалов и изделий из них приходится считаться также с возможностью прохождения тока по двум путям:

1) через объем испытуемого материала,

2) по поверхности испытуемого материала.

Способность материала проводить электрический ток тем или иным путем характеризуется величиной сопротивления, которое встречает ток на этом шути.

Соответственно имеются два понятия: объемное сопротивление, относимое к 1 см3 материала, и поверхностное сопротивление, относимое к 1 см2 поверхности материала.

Для иллюстрации рассмотрим пример.

При измерении сопротивления изоляции кабеля при помощи гальванометра могут получиться большие погрешности, вследствие того что гальванометр может измерять (рис. 3):

а) ток Iv , идущий от жилы кабеля к его металлической оболочке через объем изоляции (ток Iv , обусловленный объемным сопротивлением изоляции кабеля, характеризует сопротивление изоляции кабеля),

б) ток Is , идущий от жилы кабеля к его оболочке по поверхности изолирующего слоя (Is , обусловленный поверхностным сопротивлением, зависит не только от свойств изолирующего материала, но и от состояния его поверхности).

Рис. 3. Поверхностный и объемный ток в кабеле

Для устранения влияния поверхностей проводимости при измерении сопротивления изоляции на изолирующий слой накладывается виток проволоки (охранное кольцо), который соединяют, как указано на рис. 4.

Рис. 4. Схема для измерения объемного тока кабеля

Тогда ток Is будет проходить помимо гальванометра и не внесет погрешности в результаты измерения.

На рис. 5 дана принципиальная схема для определения объемного удельного сопротивления изолирующего материала - пластины А. Здесь ББ - электроды, к которым приложено напряжение U, Г - гальванометр, измеряющий ток, обусловленный объемным сопротивлением пластины А, В - охранное кольцо.

Рис. 5. Измерение объемного сопротивления твердого диэлектрика

На рис. 6 дана принципиальная схема для определения поверхностного удельного сопротивления изолирующего материала (пластина А).

Рис. 6. Измерение поверхностного сопротивления твердого диэлектрика

При измерении больших сопротивлений следует также обращать серьезное внимание на изоляцию самой измерительной установки, так как в противном случае через гальванометр будет проходить ток, обусловенный сопротивлением изоляции самой установки, что повлечет за собой соответствующую погрешность измерения.

Электрическое сопротивление - основная электрическая характеристика проводника, величина, характеризующая противодействие электрической цепи или ее участка электрическому току. Также сопротивлением могут называть деталь (её чаще называют резистором) оказывающую электрическое сопротивление току. Электрическое сопротивление обусловлено преобразованием электрической энергии в другие виды энергии и измеряется в Омах.

Измерение методом амперметра и вольтметра . Сопротивление какой-либо электрической установки или участка электрической цепи можно определить с помощью амперметра и вольтметра, пользуясь законом Ома. При включении приборов по схеме рис. 1.2, (а) через амперметр проходит не только измеряемый ток I x , но и ток I v , протекающий через вольтметр. Поэтому сопротивление

R x = U / (I - U/R v ) (110)

где R v -- сопротивление вольтметра.

При включении приборов по схеме рис. 1.2, б вольтметр будет измерять не только падение напряжения Ux на определенном сопротивлении, но и падение напряжения в обмотке амперметра U A = IR А. Поэтому

R x = U/I - R А (111)

где R А -- сопротивление амперметра.

В тех случаях, когда сопротивления приборов неизвестны и, следовательно, не могут быть учтены, нужно при измерении малых сопротивлений пользоваться схемой рис. 1.2,а, а при измерении больших сопротивлений -- схемой рис. 1.2, б. При этом погрешность измерений, определяемая в первой схеме током I v , а во второй -- падением напряжения UА, будет невелика по сравнению с током I x и напряжением U x .

Измерение сопротивлений электрическими мостами. Мостовая схема (рис. 1.3,а) состоит из источника питания, чувствительного прибора (гальванометра Г) и четырех резисторов, включаемых в плечи моста: с неизвестным сопротивлением R x (R4) и известными сопротивлениями R1, R2, R3, которые могут при измерениях изменяться. Прибор включают в одну из диагоналей моста (измерительную), а источник питания -- в другую (питающую).

Сопротивления R1 R2 и R3 можно подобрать такими, что при замыкании контакта В показания прибора будут равны нулю (в таком случае принято говорить, что мост уравновешен). При этом неизвестное сопротивление

R x = (R 1 /R 2 )R 3 (112)

Рис. 1.2

Рис. 1.3.

В некоторых мостах отношение плеч R1/R2 установлено постоянным, а равновесие моста достигается только подбором сопротивления R3. В других, наоборот, сопротивление R3 постоянно, а равновесие достигается подбором сопротивлений R1 и R2.

Измерение сопротивления мостом постоянного тока осуществляется следующим образом. К зажимам 1 и 2 присоединяют неизвестное сопротивление R x (например, обмотку электрической машины или аппарата), к зажимам 3 и 4 -- гальванометр, а к зажимам 5 и 6 -- источник питания (сухой гальванический элемент или аккумулятор). Затем, изменяя сопротивления R1, R2 и R3 (в качестве которых используют магазины сопротивлений, переключаемые соответствующими контактами), добиваются равновесия моста, которое определяется по нулевому показанию гальванометра (при замкнутом контакте В).

Существуют различные конструкции мостов постоянного тока, при использовании которых не требуется выполнять вычисления, так как неизвестное сопротивление R x отсчитывают по шкале прибора. Смонтированные в них магазины сопротивлений позволяют измерять сопротивления от 10 до 100 000 Ом.

При измерении малых сопротивлений обычными мостами сопротивления соединительных проводов и контактных соединений вносят большие погрешности в результаты измерения. Для их устранения применяют двойные мосты постоянного тока (рис. 1.3,б). В этих мостах провода, соединяющие резистор с измеряемым сопротивлением R x и некоторый образцовый резистор с сопротивлением R0 с другими резисторами моста, и их контактные соединения оказываются включенными последовательно с резисторами соответствующих плеч, сопротивление которых устанавливается не менее 10 Ом. Поэтому они практически не влияют на результаты измерений. Провода же, соединяющие резисторы с сопротивлениями R x и R0, входят в цепь питания и не влияют на условия равновесия моста. Поэтому точность измерения малых сопротивлений довольно высокая. Мост выполняют так, чтобы при регулировках его соблюдались следующие условия: R1 = R2 и R3 = R4. В этом случае

R x = R 0 R 1 /R 4 (113)

Двойные мосты позволяют измерить сопротивления от 10 до 0,000001 Ом.

Если мост не уравновешен, то стрелка в гальванометре будет отклоняться от нулевого положения, так как ток измерительной диагонали при неизменных значениях сопротивлений R1, R2, R3 и э. д. с. источника тока будет зависеть только от изменения сопротивления R x . Это позволяет проградуировать шкалу гальванометра в единицах сопротивления R x или каких-либо других единицах (температура, давление и пр.), от которых зависит это сопротивление. Поэтому неуравновешенный мост постоянного тока широко используют в различных устройствах для измерения неэлектрических величин электрическими методами.

Применяют также различные мосты переменного тока, которые дают возможность измерить с большой точностью индуктивности и емкости.

Измерение омметром. Омметр представляет собой миллиамперметр 1 с магнитоэлектрическим измерительным механизмом и включается последовательно с измеряемым сопротивлением R x (рис. 1.4.) и добавочным резистором R Д в цепь постоянного тока. При неизменных э. д. с. источника и сопротивления резистора R Д ток в цепи зависит только от сопротивления R x . Это позволяет отградуировать шкалу прибора непосредственно в омах. Если выходные зажимы прибора 2 и 3 замкнуты накоротко (см. штриховую линию), то ток I в цепи максимален и стрелка прибора отклоняется вправо на наибольший угол; на шкале этому соответствует сопротивление, равное нулю. Если цепь прибора разомкнута, то I = 0 и стрелка находится в начале шкалы; этому положению соответствует сопротивление, равное бесконечности.

Питание прибора осуществляется от сухого гальванического элемента 4, который устанавливается в корпусе прибора. Прибор будет давать правильные показания только в том случае, если источник тока имеет неизменную э. д. с. (такую же, как и при градуировке шкалы прибора). В некоторых омметрах имеются два или несколько пределов измерения, например от 0 до 100 Ом и от 0 до 10 000 Ом. В зависимости от этого резистор с измеряемым сопротивлением R x подключают к различным зажимам.

Измерение больших сопротивлений мегаомметрами. Для измерения сопротивления изоляции чаще всего применяют мегаомметры магнитоэлектрической системы. В качестве измерительного механизма в них использован логометр 2 (рис. 1.5.), показания которого не зависят от напряжения источника тока, питающего измерительные цепи. Катушки 1 и 3 прибора находятся в магнитном поле постоянного магнита и подключены к общему источнику питания 4.

Рис. 1.4.

Рис. 1.5.

Последовательно с одной катушкой включают добавочный резистор R д, в цепь другой катушки -- резистор сопротивлением R x .

В качестве источника тока обычно используют небольшой генератор 4 постоянного тока, называемый индуктором; якорь генератора приводят во вращение рукояткой, соединенной с ним через редуктор. Индукторы имеют значительные напряжения от 250 до 2500 В, благодаря чему мегаомметром можно измерять большие сопротивления.

При взаимодействии протекающих по катушкам токов I1 и I2 с магнитным полем постоянного магнита создаются два противоположно направленных момента М1 и М2, под влиянием которых подвижная часть прибора и стрелка будут занимать определенное положение. Как было показано в § 100, положение подвижной части логометра зависит от отношения I1/I2. Следовательно, при изменении R x будет изменяться угол? отклонения стрелки. Шкала мегаомметра градуируется непосредственно в килоомах или мегаомах (рис. 1.6, а).


Рис. 1.6.

Чтобы измерить сопротивление изоляции между проводами, необходимо отключить их от источника тока (от сети) и присоединить один провод к зажиму Л (линия) (рис. 1.6,б), а другой -- к зажиму 3 (земля). Затем, вращая рукоятку индуктора 1 мегаомметра, определяют по шкале логометра 2 сопротивление изоляции. Имеющийся в приборе переключатель 3 позволяет изменять пределы измерения. Напряжение индуктора, а следовательно, частота вращения его рукоятки теоретически не оказывают влияние на результаты измерений, но практически рекомендуется вращать ее более или менее равномерно.

При измерении сопротивления изоляции между обмотками электрической машины отсоединяют их друг от друга и соединяют одну из них с зажимом Л, а другую с зажимом 3, после чего, вращая рукоятку индуктора, определяют сопротивление изоляции. При измерении сопротивления изоляции обмотки относительно корпуса его соединяют с зажимом 3, а обмотку -- с зажимом Л.

В радиолюбительской практике иногда требуется измерить малые сопротивления значение которых ниже 1 Ом, например, в случае проверки обмоток трансформаторов на короткое замыкание, контактов реле, различных шунтов,. Как же осуществить измерение малых сопротивлений величиной в милиомы или микроомы? Как известно из курса электротехники, измерение сопротивлений основано на эффекте преобразовании их величины в ток или напряжение. На этом принципе и основывается схема приставки к мультиметру.

Эта простая схема используется при измерении малых значений сопротивления - от 0,001 до 1.999 ом. Нам потребуется отдельный аккумулятор для питания радиолюбительской конструкции. Напряжение питания стабилизируется ИМС LM317LZ. Подстроечное сопротивление необходимо точно настроить на ток 100 мА, чтобы обеспечить высокую точность и малую погрешность.

Печатная плата показана на рисунке ниже и ее проще всего сделать по . При сборке конструкции постарайтесь сократить длину монтажных проводов до минимума.

На экран стандартного цифрового мультиметра D830 будет выведено значение в Омах, от 0,001 до 1.999 Ом. Для проверки прибора определите номинал несколько параллельно соединённых одноомных сопротивлений.

Если хотите, то можете спаять не просто приставку, а полностью готовый самостоятельный прибор. В этом аналоговом милиомметре применяются два режима определения сопротивления. При стабильном токе в 1А шкала 1 деление = 0,002 Ом и при стабильном токе 0,1А шкала 1 деление = 0,02 Ом. При токе в 0,1А прибор сможет определить сопротивление от 0,02 Ома до одного Ома.


Принцип работы устройства основан в определении падения напряжения на измеряемом сопротивлении при прохождении через него заданного стабильного тока. Сопротивление рамки у стрелочного измерительного устройства 1200 Ом, ток полного отклонения равен 0,0001 А, значит, если мы применим этот индикатор в роли вольтметра, необходимо подать на него напряжение U = IхR = 0,0001х1200 = 0,12 В = 120 мВ для отклонения стрелки на последнее деление шкалы. Именно это напряжение должно упасть на сопротивлении в 1 Ом на пределе измерения прибора от 0,02 Ома до 1 Ома. Значит на этом пределе нам требуется пропустить через измеряемый резистор стабильный ток I = U/R = 0,12/1 = 0,12A = 120 мА. По аналогии рассчитываем предел и для других значений.

Принцип работы этой схемы основывается на методе измерении падения напряжения на измеряемом сопротивлении при заранее известном значении тока протекающего через него. На транзисторе VT1 создает постоянное значение тока, а его стабильность поддерживает операционный усилитель, который осуществляет управление VT1.


номинал постоянного тока в момент измерения сопротивлений до 20 Ом -10 мА и 100 мА при измерении до 2 Ом. Для стабильной работы приставки, микросхема DA1, запитана от стабилизатора напряжения 78L05. Тумблером SA1 осуществляется выбор предела измерений. Кнопку SA3 нажимаем только в момент измерений. Для защиты вольтметра в схему добавлен диод VD1.

Настройка конструкции

Сперва ручки переменных сопротивлений R2 и R5 устанавливаем в средние положения. затем на конструкцию подают напряжение 8-24 В. Постоянную величину тока, протекающего через замеряемое сопротивление, задаем следующим методом. Необходимо щупы точного амперметра подключить к зажимам измеряемого сопротивления. Переключатель SA1 поставить в положение замера сопротивлений до 2 Ом, затем нажимаем на SA3 и путем изменения переменного сопротивления R5 выставляем ток 100 мА. Далее SA1 установить в положение до 20 Ом, нажимаем SA3 уже R2 настраивают ток 10 мА. Повторяют это способ калибровки тока несколько раз, а затем движки переменных сопротивлений покрыть лаком или краской.

По своей физической природе все вещества по-разному реагируют на протекание через них электрического тока. Одни тела хорошо его пропускают и их относят к проводникам, а другие очень плохо. Это диэлектрики.

Свойства веществ противодействовать протеканию тока оценивают численным выражением — величиной электрического сопротивления. Принцип его определения предложил Георг Ом. Его именем названа единица измерения этой характеристики.

Взаимосвязь между электрическим сопротивлением вещества, приложенным к нему напряжением и протекающим электрическим током принято называть законом Ома.

Принципы измерения электрического сопротивления

Исходя из приведенной на картинке зависимости трех важнейших характеристик электричества определяют величину сопротивления. Для этого необходимо иметь:

2. измерительные приборы силы тока и напряжения.

Источник напряжения через амперметр подключают к измеряемому участку, сопротивление которого необходимо определить, а вольтметром меряют падение напряжения на потребителе.

Сняв отсчет тока I амперметром и величину напряжения U вольтметром, рассчитывают значение сопротивления R по закону Ома. Этот простой принцип позволяет выполнять замеры и производить расчеты вручную. Однако, пользоваться им в таком виде сложно. Для удобства работы созданы омметры.

Конструкция простейшего омметра

Производители измерительных приборов изготавливают устройства измерения сопротивления, работающие по:

1. аналоговым;

2. или цифровым технологиям.

Первый вид приборов называют стрелочными за счет способа отображения информации — перемещения стрелки относительно начального положения в точку отсчета на шкале.

Омметры стрелочного типа, как измерительные приборы сопротивлений, появились первыми и продолжают успешно работать до настоящего времени. Они есть в арсенале инструментов большинства электриков.

В конструкции этих приборов:

1. все компоненты приведенной схемы встроены в корпус;

2. источник выдает стабилизированное напряжение;

3. амперметр измеряет ток, но его шкала сразу проградуирована в единицах сопротивления, что исключает необходимость выполнения постоянных математических расчетов;

4. на внешние вывода клемм корпуса подключаются провода с концами, обеспечивающими быстрое создание электрической связи с испытуемым элементом.

Стрелочные приборы подобного класса измерения работают за счет собственной магнитоэлектрической системы. Внутри измерительной головки помещена обмотка провода, в которую подключена токопроводящая пружинка.

По этой обмотке от источника питания через измеряемое сопротивление Rx проходит ток, ограничиваемый резистором R до уровня миллиампер. Он создает магнитное поле, которое начинает взаимодействовать с полем постоянного магнита, расположенного здесь же, которое показано на схеме полюсами N—S.

Чувствительная стрелка закреплена на оси пружинки и под действием результирующей силы, сформированной от влияния этих двух магнитный полей, отклоняется на угол, пропорциональный силе протекающего тока или величине сопротивления проводника Rx.

Шкала прибора выполнена в делениях сопротивления — Омах. За счет этого положение стрелки на ней сразу указывает искомую величину.

Принцип работы цифрового омметра

В чистом виде цифровые измерители сопротивлений выпускаются для выполнения сложных работ специального назначения. Массовому потребителю сейчас доступен , совмещающих в своей конструкции задачи омметра, вольтметра, амперметра и другие функции.

Для замера сопротивления необходимо перевести соответствующие переключатели в требуемый режим работы прибора и подключить измерительные концы к проверяемой схеме.

При разомкнутых контактах на табло будет индикация «I», как показано на фотографии. Оно соответствует большему значению, чем прибор может определить на заданном участке чувствительности. Ведь в этом положении он уже измеряет сопротивление воздушного участка между контактами зажимов соединительных проводов.

Когда же концы установлены на резистор или проводник, то цифровой омметр отобразит значение его сопротивления реальными цифрами.

Принцип измерения электрического сопротивления цифровым омметром тоже основан на применении закона Ома. Но, в его конструкции уже работают более современные технологии, связанные с использованием:

1. соответствующих датчиков, предназначенных для измерения тока и напряжения, которые передают информацию по цифровым технологиям;

2. микропроцессорных устройств, обрабатывающих полученные сведения от датчиков и выводящих их на табло в наглядном виде.

У каждого типа цифрового омметра могут быть свои отличительные пользовательские настройки, которые следует изучить перед работой. Иначе по незнанию можно допустить грубые ошибки, ибо подача напряжения на его вход встречается довольно часто. Она проявляется выгоранием внутренних элементов схемы.

Обычными омметрами проверяют и измеряют электрические цепи, сформированные проводами и резисторами, обладающие относительно небольшими электрическими сопротивлениями на пределах до нескольких десятков или тысяч Ом.

Измерительные мосты постоянного тока

Электрические приборы измерения сопротивления в виде омметров созданы как переносные, мобильные устройства. Ими удобно пользоваться для оценки типовых, стандартных схем или прозвонки отдельных цепей.

В лабораторных условиях, где часто нужна высокая точность и качественное соблюдение метрологических характеристик при выполнении измерений работают другие устройства — измерительные мосты постоянного тока.

Электрические схемы измерительных мостов на постоянном токе

Принцип работы таких приборов основан на сравнении сопротивлений двух плеч и создании баланса между ними. Контроль сбалансированного режима осуществляется контрольным мили- или микроамперметром по прекращению протекания тока в диагонали моста.

Когда стрелка прибора установится на ноль можно вычислить искомое сопротивление Rx по значениям эталонов R1, R2 и R3.

Схема измерительного моста может иметь возможность плавного регулирования сопротивлений эталонов в плечах или выполняться ступенчато.

Внешний вид измерительных мостов

Конструктивно такие приборы выполняются в едином заводском корпусе с возможностью удобной сборки схемы для электрической проверки. Органы управления переключения эталонов позволяют быстро выполнять измерения сопротивлений.

Омметры и мосты предназначены для измерения сопротивления проводников электрического тока, обладающих резистивным сопротивлением определенной величины.

Приборы измерения сопротивления контура заземления

Необходимость периодического контроля технического состояния вызвана условиями их нахождения в грунте, который вызывает коррозионные процессы металлов. Они ухудшают электрические контакты электродов с почвой, проводимость и защитные свойства по стеканию аварийных разрядов.

Принцип работы приборов этого типа тоже основан на законе Ома. Зонд контура заземления стационарно размещен в земле (точка С), за счет чего его потенциал равен нулю.

На одинаковых расстояниях от него порядка 20 метров забивают в грунт однотипные заземлители (главный и вспомогательный) так, чтобы стационарный зонд был расположен между ними. Через оба этих электрода пропускают ток от стабилизированного источника напряжения и замеряют его величину амперметром.

На участке электродов между потенциалами точек А и С вольтметром замеряют падение напряжения, вызванное протеканием тока I. Далее проводится расчет сопротивления контура делением U на I с учетом поправки на потери тока в главном заземлителе.

Если вместо амперметра и вольтметра использовать логометр с катушками тока и напряжения, то его чувствительная стрелка будет сразу указывать конечный результат в омах, избавит пользователя от рутинных вычислений.

По этому принципу работает много марок стрелочных приборов, среди которых популярны старые модели МС-0,8, М-416 и Ф-4103.

Их удачно дополняют разнообразные современные измерители сопротивлений, созданные для подобных целей с большим арсеналом дополнительных функций.

Приборы измерения удельного сопротивления грунта

С помощью только что рассмотренного класса приборов также измеряют удельное сопротивление почвы и различных сыпучих сред. Для этого их включают по другой схеме.

Электроды главного и вспомогательного заземлителя разносят на расстояние, большее 10 метров. Учитывая то, что на точность замера могут влиять близкорасположенные токопроводящие объекты, например, металлические трубопроводы, стальные башни, арматура, то к ним допустимо приближаться не меньше, чем на 20 метров.

Остальные правила измерения остаются прежними.

По такому же принципу работают приборы измерения удельного сопротивления бетона и других твердых сред. Для них применяются специальные электроды и незначительно меняется технология замера.

Как устроены мегаомметры

Обычные омметры работают от энергии батарейки или аккумулятора — источника напряжения небольшой мощности. Его энергии достаточно для того, чтобы создать слабый электрический ток, который надежно проходит через металлы, но ее мало для создания токов в диэлектриках.

По этой причине обычным омметр не может выявить большинство дефектов, возникающих в слое изоляции. Для этих целей специально создан другой тип приборов измерения сопротивлений, которые принято называть на техническом языке «Мегаомметр». Название обозначает:

    мега — миллион, приставка;

    Ом — единица измерения;

    метр — общепринятое сокращение слова измерять.

Внешний вид

Приборы этого типа тоже бывают стрелочными и цифровыми. В качестве примера можно продемонстрировать мегаомметр марки М4100/5.

Его шкала состоит из двух поддиапазонов:

1. МΩ — мегаомы;

2. KΩ — килоомы.

Электрическая схема

Сравнивая ее со схемой устройства обычного омметра, легко увидеть, что она работает по тем же самым принципам, основанным на применении закона Ома.

В качестве источника напряжения выступает генератор постоянного тока, ручку которого необходимо равномерно вращать с определенной скоростью порядка 120 оборотов в минуту. От этого зависит уровень высоковольтного напряжения, выдаваемого в схему. Эта величина должна пробить слой дефектов с пониженной изоляцией и создать сквозь нее ток, который отобразится перемешением стрелки по шкале.

Переключатель режима измерения МΩ—KΩ коммутирует положение групп резисторов схемы, обеспечивая работу прибора в одном из рабочих поддиапазонов.

Отличием конструкции мегаомметра от простого омметра является то, что на этом приборе используются не две выходные клеммы, подключаемые к измеряемому участку, а три: З (земля), Л (линия) и Э (экран).

Клеммами земля и линия пользуются для измерения сопротивдения изоляции токоведущих частей относительно земли или между разными фазами. Клемма экрана призвана устранить воздействие создаваемых токов утечек через изоляцию на точность работы прибора.

У большого количества мегаомметров других моделей клеммы обозначают немного по-другому: «rx», «—», «Э». Но суть работы прибора от этого не меняется, а клемма экрана используется для тех же целей.

Цифровые мегаомметры

Соврменные приборы измерения сопротивления изоляции оборудования работают по тем же принципам, что их стрелочные аналоги. Но они отличаются значительно большим количеством функций, удобством в измерениях, габаритами.

Выбирая цифровые приборы для постоянной эксплуатации следует учитывать их особенность: работу от автономного источника питания. На морозе батарейки быстро теряют работоспоосбность, требуют замены. По этой причине работа стрелочными моделями с ручным генератором остается востребованной.

Правила безопасности при работе с мегаомметрами

Минимальное напряжение, создаваемое прибором на выходных клеммах, составляет 100 вольт. Оно используется для проверки изоляции электронных блоков и чувствительной аппаратуры.

В зависимости от сложности и конструкции оборудования электрической схемы на мегаомметрах применяют другие значения напряжений вплоть дл 2,5 кВ включительно. Самыми мощными приборами можно оценивать изоляцию высоковольтного оборудования линий электропередач.

Все эти работы требуют четкого выполнения правил безопасности, а осуществлять их могут исключительно подготовленные специалисты, имеющие допуск к работам под напряжением.

Характерными опасностями, создаваемыми мегаомметрами при работе являются:

    опасное высокое напряжение на выходных клеммах, измерительных проводах, подключенном электрическом оборудовании;

    необходимость предотвращения действия наведенного потенциала;

    создание остаточного заряда на схеме после выполнения замера.

При измерении сопротивления слоя изоляции высокое напряжение прикладывается между токоведущей частью и контуром земли или оборудованием другой фазы. На протяженных кабелях, линиях электропередачи оно заряжает емкость, образованную между разными потенциалами. Любой неумелый работник своим телом может создать путь для разряда этой емкости и получить электрическую травму.

Чтобы исключить такие несчастные ситуации перед выполнением замера мегаомметром проверяют отсутствие опасного потенциала на схеме и снимают его после работы с прибором по специальной методике.

Омметры, мегаомметры и рассмотренные выше измерители работают на постоянном токе, определяют только резистивное сопротивление.

Приборы измерения сопротивления в цепях переменного тока

Наличие большого количества различных индуктивных и емкостных потребителей как в бытовых домашних электросетях, так и на производстве, включая предприятия энергетики, создает дополнительные потери энергии за счет реактивной составляющей полного электрического сопротивления. Отсюда возникает необходимость ее полного учета и выполнения специфических измерений.

Приборы для измерения сопротивления петли фаза-ноль

Когда в электрической проводке происходит неисправность, приводящая к закорачиванию потенциала фазы на ноль, то образуется цепь, по которой идет ток короткого замыкания. На его величину влияет сопротивление участка электропроводки от места КЗ до источника напряжения. Оно определяет величину аварийного тока, который должен отключаться автоматическими выключателями.

Поэтому необходимо выполнять на самой удаленной точке и с его учетом подбирать номиналы защитных автоматов.

Для выполнения подобных замеров разработано несколько методик, основанных на:

    падении напряжения при: отключенной цепи и на сопротивлении нагрузки;

    коротком замыкании с пониженными токами от постороннего источника.

Замер на нагрузочном сопротивлении, встроенном в прибор, отличается точностью и удобством. Для его выполнения концы прибора вставляют в самую отдалённую от защит розетку.

Нелишним бывает выполнение измерений во всех розетках. Современные измерители, работающие по этому методу, сразу показывают сопротивление петли фаза-ноль на своем табло.

Все рассмотренные приборы представляют только часть устройств для измерения сопротивления. На предприятиях энергетики работают целые измерительные комплексы, позволяющие постоянно анализировать изменяющиеся величины электрических параметров на сложном высоковольтном оборудовании и принимать экстренные меры для устранения возникающих неисправностей.


Наука начинается с умения измерять.
Д.И.Менделеев

В практике радиолюбителя приходится встречаться с необходимостью измерения низкоомных сопротивлений (до 1 Ом). Решить эту задачу и предназначен простой миллиомметр. Этим устройством можно с достаточной для радиолюбителя точностью измерять сопротивления от 0,0001 до 1 Ома.
При измерении малых сопротивлений с помощью цифровых мультиметров последовательно с измеряемым сопротивлением, назовём его Rx, неизбежно включено сопротивление соединительных проводов, переходное сопротивление входных клемм или гнёзд, контактов переключателя и т.п. Это сопротивление (Rпр.) находится в пределах 0,1…0,4 Ом. Вследствие вышеуказанных причин, реально измеренное сопротивление будет больше Rx на некоторую величину (Rx+Rпр.). Погрешность может доходить до 50 % при измерении очень малых сопротивлений. Для больших сопротивлений эта ошибка невелика, и её можно не учитывать.
Из изложенного понятно, что надо исключить влияние соединительных проводов и т.п. на результат измерения очень малых сопротивлений. Существует метод измерения низкоомных сопротивлений по 4-зажимной схеме на постоянном токе. Применение данного метода полностью исключает влияние соединительных проводов на результат измерения малых сопротивлений. Этот метод используется в данном миллиомметре. Кратко рассмотрим суть метода измерения по 4-зажимной схеме.


Рисунок 1

На рис.1 (слева) приведена схема измерения сопротивления по 2-зажимной схеме. Красным цветом показан путь измерительного тока. Как видим, ток протекает и через измеряемый резистор и через сопротивление проводов (Rпр) мультиметра, что вносит погрешность в результат измерения. Сопротивление вольтметра не оказывает влияния на измерение Rx, так как обладает очень большим (до 10 МОм) внутренним сопротивлением Rвх. На рис.1 (справа) показана 4-зажимная схема измерения. Из схемы понятно, что сопротивление проводов не оказывает влияния на результат измерения, так как включено последовательно с очень большим внутренним сопротивлением вольтметра. Измерительный ток протекает только через резистор Rx.

Вот схема миллиомметра (рис.2).


Рисунок 2

Источником питания схемы является батарея с напряжением 9 В. Выключателем SB напряжение от батареи подаётся на микросхему стабилизатора напряжения типа 7806. Конденсатор С1 служит для подавления скачков напряжения. Резисторы R1, VR2 необходимы для установки выходного напряжения микросхемы в пределах 6 В. Потенциометром VR2 устанавливается точная величина выходного напряжения величиной 6В. Потенциометром VR3 устанавливается выходной ток, протекающий через измеряемый резистор Rx равный 100мА (0,1 А). Поскольку резистор VR3 имеет относительно большое сопротивление по сравнению с измеряемым Rx, то погрешность, возникающая при этом вследствие наличия сопротивлений Rx (от 1 мОм до 1 Ом), будет оказывать влияние на величину тока 100мА в пределах не более 2%.

Конструкция миллиомметра
Внешний вид и вид на монтаж деталей миллиомметра показан на фото 1, 2 и 3. Монтаж деталей выполнен навесным способом, микросхема на радиатор не устанавливалась. В качестве потенциометров VR2, VR3 использованы многооборотные резисторы для более точной установки напряжения и тока. Корпус прибора пластмассовый, размеры 11*6*4 см. Клеммы К1 иК2 металлические. Выключатель питания типа МТ-1.


Фото 1



Фото 2



Фото 3

Подготовка к измерению сопротивления
Подсоединить щупы цифрового вольтметра к клеммам К1 и К2. Подать напряжение от источника питания на схему, включив выключатель SB. Потенциометром VR2 установить выходное напряжение величиной 6 В при неподключённом резисторе Rx. Далее, отключив SB, переключаем мультиметр на измерение тока (щупы остаются на прежнем месте), включаем SB и потенциометром VR3 устанавливаем величину выходного тока 0,1А.


Фото 4



Фото 5

Проведение измерений
Для начала возьмём несколько резисторов известной величины (0,1; 0,2; 0,5 Ом) и измерим их сопротивление, чтобы убедиться в работоспособности миллиомметра.


Фото 6

Не включая питание под клеммы К1 и К2, зажимаем выводы измеряемого сопротивления. Щупы цифрового вольтметра устанавливаем в гнёзда клемм К1 и К2, а предел измерения на отметку 200мВ. Включаем питание и считываем показания прибора.


Фото 7

Допустим, величина измеренного напряжения 22,3 мВ. Ток ранее был установлен 100мА. Делим напряжение на ток и получаем искомое сопротивление. В нашем случае: Rx=22,3: 100= 0,223 Ом. Конечно, принято делить вольты на амперы, чтобы получить Омы, но так удобнее, не надо переводить мВ и мА в вольты и амперы. Точно также измеряем другие эталонные резисторы. Но всё-таки вспомним, что 1 В-1000мВ; 100мВ-0,1В; 10мВ-0,01В; 1мВ-0,001В; 1А-1000мА; 100мА-0,1А. В моём мультиметре наименьший предел измерения - 200мВ, цена деления - 0,1 мВ. Входное сопротивление - около 10 МОм. То есть теоретически можно измерить сопротивление величиной 0,001 Ом (1мОм). Вольтметры с низким входным сопротивлением для наших измерений не годятся.
Итак, мы определили, что проведенные измерения дали реальный результат. Теперь переходим к измерению неизвестного сопротивления. В качестве неизвестных сопротивлений будем использовать шунты из разобранных авометров. При измерении сопротивления самого большого шунта падение напряжения составило 0,5 мВ, ток 100 мА.


Фото 8

Величина сопротивления шунта, рассчитанная по закону Ома, получилась 0,005 Ом. Сопротивление малого шунта, измеренного миллиомметром, равно 0,212 Ом (падение напряжения - 21,2 мВ).
Практическое применение миллиомметр может найти при подборе шунтов для зарядных устройств, измерении сопротивлений в оконечных каскадах усилителей низкой частоты и других устройств, где необходимо измерение малых сопротивлений (переходное сопротивление контактов выключателей, реле и др.).
Измерение низкоомных сопротивлений можно производить и при токах более 0,1 А. Для этого необходимо собрать стабилизатор тока на соответствующий ток. Схемы стабилизаторов приведены на рис.3.


Рисунок 3

Стабилизатор включается в схему вместо потенциометра VR3. Конечно, это повлечёт за собой установку микросхемы и транзистора на радиаторы соответствующего размера, а также к увеличению размеров прибора.
Сопротивления менее 1мОм (1000 мкОм) измеряют с помощью микроомметров. Измерительный ток может быть величиной до 150 А. Напряжение большой роли не играет.
Если необходимо изготовить шунт для зарядного устройства, а нихрома, константана, манганина нет, то можно воспользоваться шпилькой подходящего диаметра, как показано на фото 9.


Фото 9

Материал шпильки - сталь, бронза, медь и т.п. Передвигая один из контактов по шпильке добиваются нужного сопротивления шунта. Расчёт сопротивления шунта несложен. Будут вопросы - обсудим.